These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. Bedrikovetski S; Dudi-Venkata NN; Kroon HM; Seow W; Vather R; Carneiro G; Moore JW; Sammour T BMC Cancer; 2021 Sep; 21(1):1058. PubMed ID: 34565338 [TBL] [Abstract][Full Text] [Related]
4. Gene expression profiling for guiding adjuvant chemotherapy decisions in women with early breast cancer: an evidence-based and economic analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2010; 10(23):1-57. PubMed ID: 23074401 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based radiomics predicts response to chemotherapy in colorectal liver metastases. Wei J; Cheng J; Gu D; Chai F; Hong N; Wang Y; Tian J Med Phys; 2021 Jan; 48(1):513-522. PubMed ID: 33119899 [TBL] [Abstract][Full Text] [Related]
7. MRI-Based Radiomics Features to Predict Treatment Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer: A Single Center, Prospective Study. Chen BY; Xie H; Li Y; Jiang XH; Xiong L; Tang XF; Lin XF; Li L; Cai PQ Front Oncol; 2022; 12():801743. PubMed ID: 35646677 [TBL] [Abstract][Full Text] [Related]
8. Comparison of radiomics approaches to predict resistance to 1st line chemotherapy in liver metastatic colorectal cancer. Defeudis A; Cefaloni L; Giannetto G; Cappello G; Rizzetto F; Panic J; Barra D; Nicoletti G; Mazzetti S; Vanzulli A; Regge D; Giannini V Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3305-3308. PubMed ID: 34891947 [TBL] [Abstract][Full Text] [Related]
9. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer. Ma YQ; Wen Y; Liang H; Zhong JG; Pang PP World J Gastroenterol; 2021 Oct; 27(38):6465-6475. PubMed ID: 34720535 [TBL] [Abstract][Full Text] [Related]
10. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Jia LL; Zheng QY; Tian JH; He DL; Zhao JX; Zhao LP; Huang G Front Oncol; 2022; 12():1026216. PubMed ID: 36313696 [TBL] [Abstract][Full Text] [Related]
11. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer. Li ZY; Wang XD; Li M; Liu XJ; Ye Z; Song B; Yuan F; Yuan Y; Xia CC; Zhang X; Li Q World J Gastroenterol; 2020 May; 26(19):2388-2402. PubMed ID: 32476800 [TBL] [Abstract][Full Text] [Related]
12. CT-based radiomics for the identification of colorectal cancer liver metastases sensitive to first-line irinotecan-based chemotherapy. Qi W; Yang J; Zheng L; Lu Y; Liu R; Ju Y; Niu T; Wang D Med Phys; 2023 May; 50(5):2705-2714. PubMed ID: 36841949 [TBL] [Abstract][Full Text] [Related]
13. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning. Peng J; Wang W; Jin H; Qin X; Hou J; Yang Z; Shu Z BMC Cancer; 2023 Apr; 23(1):365. PubMed ID: 37085830 [TBL] [Abstract][Full Text] [Related]
14. Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method. Zhang H; Liao M; Guo Q; Chen J; Wang S; Liu S; Xiao F Med Phys; 2023 Apr; 50(4):2049-2060. PubMed ID: 36563341 [TBL] [Abstract][Full Text] [Related]
15. [Construction of artificial neural network model for predicting the efficacy of first-line FOLFOX chemotherapy for metastatic colorectal cancer]. Lin SM; Wang XJ; Huang SH; Xu ZB; Huang Y; Lu XR; Xu DB; Chi P Zhonghua Zhong Liu Za Zhi; 2021 Feb; 43(2):202-206. PubMed ID: 33601485 [No Abstract] [Full Text] [Related]
16. Deep learning for prediction of isocitrate dehydrogenase mutation in gliomas: a critical approach, systematic review and meta-analysis of the diagnostic test performance using a Bayesian approach. Karabacak M; Ozkara BB; Mordag S; Bisdas S Quant Imaging Med Surg; 2022 Aug; 12(8):4033-4046. PubMed ID: 35919062 [TBL] [Abstract][Full Text] [Related]
17. Radiomics Response Signature for Identification of Metastatic Colorectal Cancer Sensitive to Therapies Targeting EGFR Pathway. Dercle L; Lu L; Schwartz LH; Qian M; Tejpar S; Eggleton P; Zhao B; Piessevaux H J Natl Cancer Inst; 2020 Sep; 112(9):902-912. PubMed ID: 32016387 [TBL] [Abstract][Full Text] [Related]
18. Can the computed tomography texture analysis of colorectal liver metastases predict the response to first-line cytotoxic chemotherapy? Rabe E; Cioni D; Baglietto L; Fornili M; Gabelloni M; Neri E World J Hepatol; 2022 Jan; 14(1):244-259. PubMed ID: 35126852 [TBL] [Abstract][Full Text] [Related]
19. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients. Chen S; Shu Z; Li Y; Chen B; Tang L; Mo W; Shao G; Shao F Front Oncol; 2020; 10():1410. PubMed ID: 32923392 [No Abstract] [Full Text] [Related]
20. Radiomic and clinical data integration using machine learning predict the efficacy of anti-PD-1 antibodies-based combinational treatment in advanced breast cancer: a multicentered study. Zhao J; Sun Z; Yu Y; Yuan Z; Lin Y; Tan Y; Duan X; Yao H; Wang Y; Liu J J Immunother Cancer; 2023 May; 11(5):. PubMed ID: 37217246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]