BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36011640)

  • 21. Ni and Cu recovery by bioleaching from the printed circuit boards of mobile phones in non-conventional medium.
    Arshadi M; Nili S; Yaghmaei S
    J Environ Manage; 2019 Nov; 250():109502. PubMed ID: 31499463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.
    Birloaga I; Coman V; Kopacek B; Vegliò F
    Waste Manag; 2014 Dec; 34(12):2581-6. PubMed ID: 25242605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fungal bioleaching of metals from WPCBs of mobile phones employing mixed Aspergillus spp.: Optimization and predictive modelling by RSM and AI models.
    Trivedi A; Hait S
    J Environ Manage; 2024 Jan; 349():119565. PubMed ID: 37976642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective leaching of valuable metals from waste printed circuit boards.
    Oh CJ; Lee SO; Yang HS; Ha TJ; Kim MJ
    J Air Waste Manag Assoc; 2003 Jul; 53(7):897-902. PubMed ID: 12880076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustainable valorization of semiconductor industry tantalum scrap using non-hazardous HF substitute lixiviant.
    Swain B; Lee J; Woo Gu B; Lee CG; Yoon JH
    Waste Manag; 2022 May; 144():294-302. PubMed ID: 35427901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density.
    Garg H; Nagar N; Ellamparuthy G; Angadi SI; Gahan CS
    Heliyon; 2019 Dec; 5(12):e02883. PubMed ID: 31872109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recycling-oriented methodology to sample and characterize the metal composition of waste Printed Circuit Boards.
    Hubau A; Chagnes A; Minier M; Touzé S; Chapron S; Guezennec AG
    Waste Manag; 2019 May; 91():62-71. PubMed ID: 31203943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
    Wang C; Sun R; Xing B
    J Air Waste Manag Assoc; 2021 Dec; 71(12):1483-1491. PubMed ID: 33433266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pretreatment of low-grade shredded dust e-waste to enhance silver recovery through biocyanidation by
    Thakur P; Kumar S
    3 Biotech; 2021 Nov; 11(11):454. PubMed ID: 34616648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyanide consumption minimisation and concomitant toxic effluent minimisation during precious metals extraction from waste printed circuit boards.
    Li H; Oraby E; Eksteen J
    Waste Manag; 2021 Apr; 125():87-97. PubMed ID: 33684667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on recent advancements in recovery of valuable and toxic metals from e-waste using bioleaching approach.
    Yaashikaa PR; Priyanka B; Senthil Kumar P; Karishma S; Jeevanantham S; Indraganti S
    Chemosphere; 2022 Jan; 287(Pt 2):132230. PubMed ID: 34826922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The brighter side of e-waste-a rich secondary source of metal.
    Tipre DR; Khatri BR; Thacker SC; Dave SR
    Environ Sci Pollut Res Int; 2021 Mar; 28(9):10503-10518. PubMed ID: 33438127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Different leaching procedures for heavy metal toxicity of waste PCBs].
    Zhao GH; Huang ZH; Zheng Z; Luo XZ
    Huan Jing Ke Xue; 2009 May; 30(5):1533-8. PubMed ID: 19558130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of gold and silver leaching from printed circuit board of cellphones.
    Petter PM; Veit HM; Bernardes AM
    Waste Manag; 2014 Feb; 34(2):475-82. PubMed ID: 24332399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient recovery of Cu and Ni from WPCB via alkali leaching approach.
    Jadhao PR; Pandey A; Pant KK; Nigam KDP
    J Environ Manage; 2021 Oct; 296():113154. PubMed ID: 34216905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment.
    Pokhrel P; Lin SL; Tsai CT
    J Environ Manage; 2020 Dec; 276():111276. PubMed ID: 32871467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioleaching metals from waste electrical and electronic equipment (WEEE) by Aspergillus niger: a review.
    Li J; Xu T; Liu J; Wen J; Gong S
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):44622-44637. PubMed ID: 34215982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers.
    Yamane LH; de Moraes VT; Espinosa DC; Tenório JA
    Waste Manag; 2011 Dec; 31(12):2553-8. PubMed ID: 21820883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cost-effective and eco-friendly copper recovery from waste printed circuit boards using organic chemical leaching.
    Nagarajan N; Panchatcharam P
    Heliyon; 2023 Mar; 9(3):e13806. PubMed ID: 36895407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.