These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36011987)
21. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil. Sun R; Gao Y; Yang Y Chemosphere; 2022 Mar; 291(Pt 1):132792. PubMed ID: 34748803 [TBL] [Abstract][Full Text] [Related]
22. Phytomanagement of Pb/Zn/Cu tailings using biosolids-biochar or -humus combinations: Enhancement of bioenergy crop production, substrate functionality, and ecosystem services. Al-Lami MK; Oustriere N; Gonzales E; Burken JG Sci Total Environ; 2022 Aug; 836():155676. PubMed ID: 35523335 [TBL] [Abstract][Full Text] [Related]
23. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter. Xing W; Liu H; Banet T; Wang H; Ippolito JA; Li L Ecotoxicol Environ Saf; 2020 Jul; 198():110683. PubMed ID: 32361499 [TBL] [Abstract][Full Text] [Related]
24. Synergistic effect of pyrene and heavy metals (Zn, Pb, and Cd) on phytoremediation potential of Medicago sativa L. (alfalfa) in multi-contaminated soil. Mathur J; Panwar R Environ Sci Pollut Res Int; 2024 Mar; 31(14):21012-21027. PubMed ID: 38383928 [TBL] [Abstract][Full Text] [Related]
25. [Pb, Zn accumulation and nutrient uptake of 15 plant species grown in abandoned mine tailings]. Shi X; Chen YT; Wang SF; Li JC Huan Jing Ke Xue; 2012 Jun; 33(6):2021-7. PubMed ID: 22946191 [TBL] [Abstract][Full Text] [Related]
26. The geochemical and mineralogical controls on the release characteristics of potentially toxic elements from lead/zinc (Pb/Zn) mine tailings. Chen T; Wen XC; Zhang LJ; Tu SC; Zhang JH; Sun RN; Yan B Environ Pollut; 2022 Dec; 315():120328. PubMed ID: 36202267 [TBL] [Abstract][Full Text] [Related]
27. Dodonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines. Castañeda-Espinoza J; Salinas-Sánchez DO; Mussali-Galante P; Castrejón-Godínez ML; Rodríguez A; González-Cortazar M; Zamilpa-Álvarez A; Tovar-Sánchez E Environ Sci Pollut Res Int; 2023 Jan; 30(2):2509-2529. PubMed ID: 35931856 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Ye ZH; Shu WS; Zhang ZQ; Lan CY; Wong MH Chemosphere; 2002 Jun; 47(10):1103-11. PubMed ID: 12137044 [TBL] [Abstract][Full Text] [Related]
29. [Tolerance and vegetation restoration prospect of seedlings of five oak species for Pb/Zn mine tailing]. Shi X; Wang SF; Chen YT; Xu QD; Sun HJ; An R; Lu XH; Lu Y; Fan SJ Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4091-4098. PubMed ID: 31840453 [TBL] [Abstract][Full Text] [Related]
30. Colonization and phytoremediation potential for Xin J; Liu Y; Liu J; Tian R Environ Technol; 2024 Jan; 45(3):532-543. PubMed ID: 35980148 [TBL] [Abstract][Full Text] [Related]
31. [Heavy metal contents and enrichment characteristics of dominant plants in a lead-zinc tailings in Xiashuiwan of Hunan Province]. He D; Qiu B; Peng JH; Peng L; Hu LX; Hu Y Huan Jing Ke Xue; 2013 Sep; 34(9):3595-600. PubMed ID: 24289010 [TBL] [Abstract][Full Text] [Related]
32. Assessment of bioremediation potential of Calotropis procera and Nerium oleander for sustainable management of vehicular released metals in roadside soils. Anjum S; Sarwar M; Ali Q; Alam MW; Manzoor MT; Mukhtar A Sci Rep; 2024 Apr; 14(1):8920. PubMed ID: 38637588 [TBL] [Abstract][Full Text] [Related]
33. Lability, bioaccessibility, and ecological and health risks of anthropogenic toxic heavy metals in the arid calcareous soil around a nonferrous metal smelting area. Chu Z; Lin C; Yang K; Cheng H; Gu X; Wang B; Wu L; Ma J Chemosphere; 2022 Nov; 307(Pt 4):136200. PubMed ID: 36030943 [TBL] [Abstract][Full Text] [Related]
34. Phytostabilization of Pb-Zn Mine Tailings with Sikdar A; Wang J; Hasanuzzaman M; Liu X; Feng S; Roy R; Sial TA; Lahori AH; Arockiam Jeyasundar PGS; Wang X Molecules; 2020 Apr; 25(7):. PubMed ID: 32244753 [TBL] [Abstract][Full Text] [Related]
35. Enhancing the effectiveness of zinc, cadmium, and lead phytoextraction in polluted soils by using amendments and microorganisms. Mishra R; Datta SP; Annapurna K; Meena MC; Dwivedi BS; Golui D; Bandyopadhyay K Environ Sci Pollut Res Int; 2019 Jun; 26(17):17224-17235. PubMed ID: 31012068 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Wu B; Peng H; Sheng M; Luo H; Wang X; Zhang R; Xu F; Xu H Ecotoxicol Environ Saf; 2021 Sep; 220():112368. PubMed ID: 34082243 [TBL] [Abstract][Full Text] [Related]
37. Phytoremediation uptake model of heavy metals (Pb, Cd and Zn) in soil using Ibrahim N; El Afandi G Heliyon; 2020 Jul; 6(7):e04445. PubMed ID: 32695916 [TBL] [Abstract][Full Text] [Related]
38. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. Chen T; Wen X; Zhou J; Lu Z; Li X; Yan B Environ Pollut; 2023 Dec; 338():122667. PubMed ID: 37783414 [TBL] [Abstract][Full Text] [Related]
39. Preparation of phosphorus-modified biochar for the immobilization of heavy metals in typical lead-zinc contaminated mining soil: Performance, mechanism and microbial community. Sha H; Li J; Wang L; Nong H; Wang G; Zeng T Environ Res; 2023 Feb; 218():114769. PubMed ID: 36463989 [TBL] [Abstract][Full Text] [Related]
40. Long-term effects of phytoextraction by a poplar clone on the concentration, fractionation, and transportation of heavy metals in mine tailings. Suo Y; Tang N; Li H; Corti G; Jiang L; Huang Z; Zhang Z; Huang J; Wu Z; Feng C; Zhang X Environ Sci Pollut Res Int; 2021 Sep; 28(34):47528-47539. PubMed ID: 33895954 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]