These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36011987)
41. [Effects of Amendments with Different C/N/P Ratios on Plant and Soil Properties of a Pb-Zn Mine Tailings]. Yang SX; Li FM; Peng XZ; Cao JB; Gao ZX Huan Jing Ke Xue; 2019 Sep; 40(9):4253-4261. PubMed ID: 31854892 [TBL] [Abstract][Full Text] [Related]
42. [Effects of Three Industrial Organic Wastes as Amendments on Plant Growth and the Biochemical Properties of a Pb/Zn Mine Tailings]. Peng XZ; Yang SX; Li FM; Cao JB; Peng QJ Huan Jing Ke Xue; 2016 Jan; 37(1):301-8. PubMed ID: 27078971 [TBL] [Abstract][Full Text] [Related]
43. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris. Liu B; Wang S; Wang J; Zhang X; Shen Z; Shi L; Chen Y Sci Total Environ; 2020 Jun; 719():137475. PubMed ID: 32114237 [TBL] [Abstract][Full Text] [Related]
44. Perspectives for phytoremediation capability of native plants growing on Angouran Pb-Zn mining complex in northwest of Iran. Hosseinniaee S; Jafari M; Tavili A; Zare S; Cappai G; De Giudici G J Environ Manage; 2022 Aug; 315():115184. PubMed ID: 35523070 [TBL] [Abstract][Full Text] [Related]
45. Phosphate treatment alleviated acute phytotoxicity of heavy metals in sulfidic Pb-Zn mine tailings. Saavedra-Mella F; Liu Y; Southam G; Huang L Environ Pollut; 2019 Jul; 250():676-685. PubMed ID: 31035150 [TBL] [Abstract][Full Text] [Related]
46. Competitive sorption of Cd, Cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Jalali M; Moradi F Environ Monit Assess; 2013 Nov; 185(11):8831-46. PubMed ID: 23677680 [TBL] [Abstract][Full Text] [Related]
47. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching. Ke X; Zhang FJ; Zhou Y; Zhang HJ; Guo GL; Tian Y Chemosphere; 2020 Sep; 255():126690. PubMed ID: 32387903 [TBL] [Abstract][Full Text] [Related]
48. Evolution of the Speciation and Mobility of Pb, Zn and Cd in Relation to Transport Processes in a Mining Environment. Elmayel I; Esbrí JM; Efrén GO; García-Noguero EM; Elouear Z; Jalel B; Farieri A; Roqueñí N; Cienfuegos P; Higueras P Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32650360 [TBL] [Abstract][Full Text] [Related]
49. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. El Azhari A; Rhoujjati A; El Hachimi ML; Ambrosi JP Ecotoxicol Environ Saf; 2017 Oct; 144():464-474. PubMed ID: 28667858 [TBL] [Abstract][Full Text] [Related]
50. Effects of three plant growth-promoting bacterial symbiosis with ryegrass for remediation of Cd, Pb, and Zn soil in a mining area. Zhao Y; Yao J; Li H; Sunahara G; Li M; Tang C; Duran R; Ma B; Liu H; Feng L; Zhu J; Wu Y J Environ Manage; 2024 Feb; 353():120167. PubMed ID: 38308995 [TBL] [Abstract][Full Text] [Related]
51. Pfaffia glomerata is a hyperaccumulator candidate: Cd and Zn tolerance, absorption, transfer, and distribution. Huang R; Wu Z; Zhao X; Li F; Wang W; Guo Y; Li Z; Wu J Ecotoxicol Environ Saf; 2022 Nov; 246():114196. PubMed ID: 36252514 [TBL] [Abstract][Full Text] [Related]
52. Accumulation and subcellular distribution of heavy metal in Zhang Q; Chen Y; Du L; Zhang M; Han L Int J Phytoremediation; 2019; 21(11):1153-1160. PubMed ID: 31084357 [TBL] [Abstract][Full Text] [Related]
53. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
54. Geochemical properties, heavy metals and soil microbial community during revegetation process in a production Pb-Zn tailings. Wen X; Zhou J; Zheng S; Yang Z; Lu Z; Jiang X; Zhao L; Yan B; Yang X; Chen T J Hazard Mater; 2024 Feb; 463():132809. PubMed ID: 37898087 [TBL] [Abstract][Full Text] [Related]
55. [Screening and Stress Responsive Characteristics of Potential Hyperaccumulator of Pb, Zn, and Cd Compound Heavy Metals]. Fan SX; Zhang N; Sun MH; Hou XD Huan Jing Ke Xue; 2024 Aug; 45(8):4870-4882. PubMed ID: 39168703 [TBL] [Abstract][Full Text] [Related]
56. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization. Hu Y; Nan Z; Su J; Wang N Environ Sci Pollut Res Int; 2013 Oct; 20(10):7194-203. PubMed ID: 23681772 [TBL] [Abstract][Full Text] [Related]
57. Extraction of heavy metals from copper tailings by ryegrass (Lolium perenne L.) with the assistance of degradable chelating agents. Wang W; Xue J; Zhang L; He M; You J Sci Rep; 2024 Apr; 14(1):7663. PubMed ID: 38561404 [TBL] [Abstract][Full Text] [Related]
58. [Potential of Intercropping Wang XH; Xiao XY; Guo ZH; Peng C; Wang XY Huan Jing Ke Xue; 2023 Jan; 44(1):426-435. PubMed ID: 36635830 [TBL] [Abstract][Full Text] [Related]
59. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779 [TBL] [Abstract][Full Text] [Related]
60. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions. Jalali M; Imanifard A Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]