These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3601216)

  • 41. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Muscarinic receptor activities potentiated by desensitization of nicotinic receptors in rat superior cervical ganglia.
    Wan Q; Luo ZP; Wang H
    Acta Pharmacol Sin; 2003 Jul; 24(7):657-62. PubMed ID: 12852831
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pharmacological analysis of tonic activity in motoneurons during stick insect walking.
    Westmark S; Oliveira EE; Schmidt J
    J Neurophysiol; 2009 Aug; 102(2):1049-61. PubMed ID: 19515945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SOMA POTENTIALS AND MODES OF ACTIVATION OF CRAYFISH MOTONEURONS.
    TAKEDA K; KENNEDY D
    J Cell Comp Physiol; 1964 Oct; 64():165-81. PubMed ID: 14219651
    [No Abstract]   [Full Text] [Related]  

  • 45. Dendritic bottlenecks of crustacean motoneurons.
    Atwood HL; Pomeranz B
    J Neurocytol; 1977 Jun; 6(3):251-68. PubMed ID: 903793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator.
    Lafreniere-Roula M; McCrea DA
    J Neurophysiol; 2005 Aug; 94(2):1120-32. PubMed ID: 15872066
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long-lasting decrease in the crayfish giant motoneuron soma excitability induced by Ca2+ influx.
    Roux-Bruxelle M; Czternasty J; Bruner J
    Brain Res; 1991 Dec; 567(1):175-9. PubMed ID: 1815826
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a P-type calcium current in a crayfish motoneuron and its selective modulation by impulse activity.
    Hong SJ; Lnenicka GA
    J Neurophysiol; 1997 Jan; 77(1):76-85. PubMed ID: 9120598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. I. Multisensory coding and motor neuron monosynaptic responses.
    Le Ray D; Clarac F; Cattaert D
    J Neurophysiol; 1997 Dec; 78(6):3133-43. PubMed ID: 9405533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coupling of efferent neuromodulatory neurons to rhythmical leg motor activity in the locust.
    Baudoux S; Duch C; Morris OT
    J Neurophysiol; 1998 Jan; 79(1):361-70. PubMed ID: 9425205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibitory connections between antagonistic motor neurones of the crayfish walking legs.
    Pearlstein E; Watson AH; Bévengut M; Cattaert D
    J Comp Neurol; 1998 Sep; 399(2):241-54. PubMed ID: 9721906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion.
    Freschi JE; Livengood DR
    J Neurophysiol; 1989 Oct; 62(4):984-95. PubMed ID: 2681563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial segregation of excitatory and inhibitory effects of 5-HT on crayfish motoneurons.
    Bacqué-Cazenave J; Issa FA; Edwards DH; Cattaert D
    J Neurophysiol; 2013 Jun; 109(11):2793-802. PubMed ID: 23486199
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synaptic regulation of cellular properties and burst oscillations of neurons in gastric mill system of spiny lobsters, Panulirus interruptus.
    Russell DF; Hartline DK
    J Neurophysiol; 1984 Jul; 52(1):54-73. PubMed ID: 6747678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuroanatomy of a crayfish thoracic ganglion: sensory and motor roots of the walking-leg nerves and possible homologies with insects.
    Elson RC
    J Comp Neurol; 1996 Jan; 365(1):1-17. PubMed ID: 8821437
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Serotonin-containing neurons in lobsters: their role as gain-setters in postural control mechanisms.
    Ma PM; Beltz BS; Kravitz EA
    J Neurophysiol; 1992 Jul; 68(1):36-54. PubMed ID: 1517827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The inhibitory motoneurons of crayfish thoracic limbs: identification, structures, and homology with insect common inhibitors.
    Wiens TJ; Wolf H
    J Comp Neurol; 1993 Oct; 336(2):261-78. PubMed ID: 8245218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Different effects of muscarinic agonists in rat superior cervical ganglion and hippocampal slices.
    Boddeke HW
    Eur J Pharmacol; 1991 Aug; 201(2-3):191-7. PubMed ID: 1724649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vitro, proctolin and serotonin induced modulations of the abdominal motor system activities in crayfish.
    Barthe JY; Bevengut M; Clarac F
    Brain Res; 1993 Sep; 623(1):101-9. PubMed ID: 8106117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Motor neuron activity of the pedal ganglia of pteropod mollusks during generation of locomotor rhythms].
    Arshavskiĭ IuI; Beloozerova IN; Orlovskiĭ GN; Pavlova GA; Panchin IuV
    Neirofiziologiia; 1984; 16(2):269-71. PubMed ID: 6330585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.