These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 36012181)

  • 1. In Vitro Models of Biological Barriers for Nanomedical Research.
    Carton F; Malatesta M
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the interactions between nanoparticles and biological barriers in vitro: a new challenge for microscopy techniques in nanomedicine.
    Carton F; Malatesta M
    Eur J Histochem; 2022 Nov; 66(4):. PubMed ID: 36420803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three dimensional spheroid cell culture for nanoparticle safety testing.
    Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T
    J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles and Microfluidic Devices in Cancer Research.
    Maia FR; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():161-171. PubMed ID: 32285370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics for 3D Cell and Tissue Cultures: Microfabricative and Ethical Aspects Updates.
    Limongi T; Guzzi F; Parrotta E; Candeloro P; Scalise S; Lucchino V; Gentile F; Tirinato L; Coluccio ML; Torre B; Allione M; Marini M; Susa F; Fabrizio ED; Cuda G; Perozziello G
    Cells; 2022 May; 11(10):. PubMed ID: 35626736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in microfluidic technologies for cell-to-cell interaction studies.
    Rothbauer M; Zirath H; Ertl P
    Lab Chip; 2018 Jan; 18(2):249-270. PubMed ID: 29143053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation.
    Wang HF; Ran R; Liu Y; Hui Y; Zeng B; Chen D; Weitz DA; Zhao CX
    ACS Nano; 2018 Nov; 12(11):11600-11609. PubMed ID: 30380832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-On-A-Chip Models for Predicting In Vivo Nanoparticle Behavior.
    de Roode KE; Hashemi K; Verdurmen WPR; Brock R
    Small; 2024 Aug; 20(35):e2402311. PubMed ID: 38700060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microfluidic Tumor-on-a-Chip for Assessing Multifunctional Liposomes' Tumor Targeting and Anticancer Efficacy.
    Ran R; Wang HF; Hou F; Liu Y; Hui Y; Petrovsky N; Zhang F; Zhao CX
    Adv Healthc Mater; 2019 Apr; 8(8):e1900015. PubMed ID: 30868753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures.
    Bourn MD; Batchelor DVB; Ingram N; McLaughlan JR; Coletta PL; Evans SD; Peyman SA
    J Control Release; 2020 Oct; 326():13-24. PubMed ID: 32562855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioreactors and Microfluidics for Osteochondral Interface Maturation.
    Canadas RF; Marques AP; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2018; 1059():395-420. PubMed ID: 29736584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric Microporous Nanofilms as Smart Platforms for in Vitro Assessment of Nanoparticle Translocation and Caco-2 Cell Culture.
    Ricotti L; Gori G; Cei D; Costa J; Signore G; Ahluwalia A
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):689-696. PubMed ID: 27576259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress and future of in vitro models to study translocation of nanoparticles.
    Braakhuis HM; Kloet SK; Kezic S; Kuper F; Park MV; Bellmann S; van der Zande M; Le Gac S; Krystek P; Peters RJ; Rietjens IM; Bouwmeester H
    Arch Toxicol; 2015 Sep; 89(9):1469-95. PubMed ID: 25975987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.
    Rinkenauer AC; Press AT; Raasch M; Pietsch C; Schweizer S; Schwörer S; Rudolph KL; Mosig A; Bauer M; Traeger A; Schubert US
    J Control Release; 2015 Oct; 216():158-68. PubMed ID: 26277064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier.
    Costa A; de Souza Carvalho-Wodarz C; Seabra V; Sarmento B; Lehr CM
    Acta Biomater; 2019 Jun; 91():235-247. PubMed ID: 31004840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models for barrier understanding in health and disease in lab-on-a-chips.
    Ponmozhi J; Dhinakaran S; Kocsis D; Iván K; Erdő F
    Tissue Barriers; 2024 Apr; 12(2):2221632. PubMed ID: 37294075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms.
    Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip.
    Feiner-Gracia N; Glinkowska Mares A; Buzhor M; Rodriguez-Trujillo R; Samitier Marti J; Amir RJ; Pujals S; Albertazzi L
    ACS Appl Bio Mater; 2021 Jan; 4(1):669-681. PubMed ID: 33490884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.