BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36012203)

  • 1. Efficient Base-Catalyzed Kemp Elimination in an Engineered Ancestral Enzyme.
    Gutierrez-Rus LI; Alcalde M; Risso VA; Sanchez-Ruiz JM
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kemp Eliminase Activity of Ketosteroid Isomerase.
    Lamba V; Sanchez E; Fanning LR; Howe K; Alvarez MA; Herschlag D; Forconi M
    Biochemistry; 2017 Jan; 56(4):582-591. PubMed ID: 28045505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preorganization oriented computational method for de novo design of Kemp elimination enzymes.
    Zhang S; Zhang J; Luo W; Wang P; Zhu Y
    Enzyme Microb Technol; 2022 Oct; 160():110093. PubMed ID: 35816919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59.
    Khersonsky O; Kiss G; Röthlisberger D; Dym O; Albeck S; Houk KN; Baker D; Tawfik DS
    Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10358-63. PubMed ID: 22685214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using High-Throughput Molecular Dynamics Simulation to Enhance the Computational Design of Kemp Elimination Enzymes.
    Wang P; Zhang J; Zhang S; Lu D; Zhu Y
    J Chem Inf Model; 2023 Feb; 63(4):1323-1337. PubMed ID: 36782360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing a
    Risso VA; Romero-Rivera A; Gutierrez-Rus LI; Ortega-Muñoz M; Santoyo-Gonzalez F; Gavira JA; Sanchez-Ruiz JM; Kamerlin SCL
    Chem Sci; 2020 Jun; 11(24):6134-6148. PubMed ID: 32832059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kemp Elimination Catalyzed by Naturally Occurring Aldoxime Dehydratases.
    Miao Y; Metzner R; Asano Y
    Chembiochem; 2017 Mar; 18(5):451-454. PubMed ID: 28120515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo active sites for resurrected Precambrian enzymes.
    Risso VA; Martinez-Rodriguez S; Candel AM; Krüger DM; Pantoja-Uceda D; Ortega-Muñoz M; Santoyo-Gonzalez F; Gaucher EA; Kamerlin SCL; Bruix M; Gavira JA; Sanchez-Ruiz JM
    Nat Commun; 2017 Jul; 8():16113. PubMed ID: 28719578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of side chain entropy and mutual information for improving the de novo design of Kemp eliminases KE07 and KE70.
    Bhowmick A; Sharma SC; Honma H; Head-Gordon T
    Phys Chem Chem Phys; 2016 Jul; 18(28):19386-96. PubMed ID: 27374812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Evolution Provides Strong Hints about Laboratory Evolution of Designer Enzymes.
    Xie WJ; Warshel A
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2207904119. PubMed ID: 35901204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision is essential for efficient catalysis in an evolved Kemp eliminase.
    Blomberg R; Kries H; Pinkas DM; Mittl PR; Grütter MG; Privett HK; Mayo SL; Hilvert D
    Nature; 2013 Nov; 503(7476):418-21. PubMed ID: 24132235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Efficient Artificial Enzymes Using Crystallographically Enhanced Conformational Sampling.
    Rakotoharisoa RV; Seifinoferest B; Zarifi N; Miller JDM; Rodriguez JM; Thompson MC; Chica RA
    J Am Chem Soc; 2024 Apr; 146(14):10001-10013. PubMed ID: 38532610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
    Broom A; Rakotoharisoa RV; Thompson MC; Zarifi N; Nguyen E; Mukhametzhanov N; Liu L; Fraser JS; Chica RA
    Nat Commun; 2020 Sep; 11(1):4808. PubMed ID: 32968058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of efficient artificial enzymes using crystallographically-enhanced conformational sampling.
    Rakotoharisoa RV; Seifinoferest B; Zarifi N; Miller JDM; Rodriguez JM; Thompson MC; Chica RA
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase.
    Bhowmick A; Sharma SC; Head-Gordon T
    J Am Chem Soc; 2017 Apr; 139(16):5793-5800. PubMed ID: 28383910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the Origin of the Efficiency of the De Novo Designed Kemp Eliminase HG-3.17 by Comparison with the Former Developed HG-3.
    Świderek K; Tuñón I; Moliner V; Bertran J
    Chemistry; 2017 Jun; 23(31):7582-7589. PubMed ID: 28334464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
    Frushicheva MP; Cao J; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16869-74. PubMed ID: 20829491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
    Khersonsky O; Röthlisberger D; Wollacott AM; Murphy P; Dym O; Albeck S; Kiss G; Houk KN; Baker D; Tawfik DS
    J Mol Biol; 2011 Apr; 407(3):391-412. PubMed ID: 21277311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.