BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36012203)

  • 21. Protein engineering from "scratch" is maturing.
    Höhne M; Bornscheuer UT
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1200-2. PubMed ID: 24339163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic efficiency of designed catalytic proteins.
    Korendovych IV; DeGrado WF
    Curr Opin Struct Biol; 2014 Aug; 27():113-21. PubMed ID: 25048695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iterative approach to computational enzyme design.
    Privett HK; Kiss G; Lee TM; Blomberg R; Chica RA; Thomas LM; Hilvert D; Houk KN; Mayo SL
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3790-5. PubMed ID: 22357762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme.
    Zou T; Risso VA; Gavira JA; Sanchez-Ruiz JM; Ozkan SB
    Mol Biol Evol; 2015 Jan; 32(1):132-43. PubMed ID: 25312912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kemp Elimination in Cationic Micelles: Designed Enzyme-Like Rates Achieved through the Addition of Long-Chain Bases.
    Sanchez E; Lu S; Reed C; Schmidt J; Forconi M
    J Phys Org Chem; 2016 Apr; 29(4):185-189. PubMed ID: 27162418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural characterization and Kemp eliminase activity of the Mycobacterium smegmatis Ketosteroid Isomerase.
    Liang Y; Li W; Liang H; Lou X; Liu R; Zhang Q; Bartlam M
    Biochem Biophys Res Commun; 2021 Jun; 560():159-164. PubMed ID: 33992958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
    Frushicheva MP; Cao J; Warshel A
    Biochemistry; 2011 May; 50(18):3849-58. PubMed ID: 21443179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kemp elimination catalysts by computational enzyme design.
    Röthlisberger D; Khersonsky O; Wollacott AM; Jiang L; DeChancie J; Betker J; Gallaher JL; Althoff EA; Zanghellini A; Dym O; Albeck S; Houk KN; Tawfik DS; Baker D
    Nature; 2008 May; 453(7192):190-5. PubMed ID: 18354394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A redox-mediated Kemp eliminase.
    Li A; Wang B; Ilie A; Dubey KD; Bange G; Korendovych IV; Shaik S; Reetz MT
    Nat Commun; 2017 Mar; 8():14876. PubMed ID: 28348375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SABER: a computational method for identifying active sites for new reactions.
    Nosrati GR; Houk KN
    Protein Sci; 2012 May; 21(5):697-706. PubMed ID: 22492397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering.
    Der BS; Edwards DR; Kuhlman B
    Biochemistry; 2012 May; 51(18):3933-40. PubMed ID: 22510088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07.
    Labas A; Szabo E; Mones L; Fuxreiter M
    Biochim Biophys Acta; 2013 May; 1834(5):908-17. PubMed ID: 23380188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Possibilities of Using De Novo Design for Generating Diverse Functional Food Enzymes.
    Wang X; Xu K; Tan Y; Liu S; Zhou J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The maximum entropy production requirement for proton transfers enhances catalytic efficiency for β-lactamases.
    Juretić D; Bonačić Lošić Ž; Kuić D; Simunić J; Dobovišek A
    Biophys Chem; 2019 Jan; 244():11-21. PubMed ID: 30448627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel enzymes through design and evolution.
    Woycechowsky KJ; Vamvaca K; Hilvert D
    Adv Enzymol Relat Areas Mol Biol; 2007; 75():241-94, xiii. PubMed ID: 17124869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model.
    Huang X; Xue J; Lin M; Zhu Y
    PLoS One; 2016; 11(5):e0156559. PubMed ID: 27243223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing better enzymes: Insights from directed evolution.
    Bunzel HA; Anderson JLR; Mulholland AJ
    Curr Opin Struct Biol; 2021 Apr; 67():212-218. PubMed ID: 33517098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering an allosteric binding site for aminoglycosides into TEM1-β-Lactamase.
    Volkov AN; Barrios H; Mathonet P; Evrard C; Ubbink M; Declercq JP; Soumillion P; Fastrez J
    Chembiochem; 2011 Apr; 12(6):904-13. PubMed ID: 21425229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of reorganization energy in rational enzyme design.
    Fuxreiter M; Mones L
    Curr Opin Chem Biol; 2014 Aug; 21():34-41. PubMed ID: 24769299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.