These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36012203)

  • 41. Exploring the Development of Ground-State Destabilization and Transition-State Stabilization in Two Directed Evolution Paths of Kemp Eliminases.
    Jindal G; Ramachandran B; Bora RP; Warshel A
    ACS Catal; 2017 May; 7(5):3301-3305. PubMed ID: 29082065
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering a model protein cavity to catalyze the Kemp elimination.
    Merski M; Shoichet BK
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16179-83. PubMed ID: 22988064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Installing hydrolytic activity into a completely de novo protein framework.
    Burton AJ; Thomson AR; Dawson WM; Brady RL; Woolfson DN
    Nat Chem; 2016 Sep; 8(9):837-44. PubMed ID: 27554410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kemp Elimination Reaction Catalyzed by Electric Fields.
    Acosta-Silva C; Bertran J; Branchadell V; Oliva A
    Chemphyschem; 2020 Feb; 21(4):295-306. PubMed ID: 31840917
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis.
    Klein AS; Zeymer C
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 33635315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of Artificial Enzymes: Insights into Protein Scaffolds.
    Hanreich S; Bonandi E; Drienovská I
    Chembiochem; 2023 Mar; 24(6):e202200566. PubMed ID: 36418221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enoyl-coenzyme A hydratase-catalyzed exchange of the alpha-protons of coenzyme A thiol esters: a model for an enolized intermediate in the enzyme-catalyzed elimination?
    D'Ordine RL; Bahnson BJ; Tonge PJ; Anderson VE
    Biochemistry; 1994 Dec; 33(49):14733-42. PubMed ID: 7993901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kemp Eliminases of the AlleyCat Family Possess High Substrate Promiscuity.
    Caselle EA; Yoon JH; Bhattacharya S; Rempillo JJL; Lengyel Z; D'Souza A; Moroz YS; Tolbert PL; Volkov AN; Forconi M; Castañeda CA; Makhlynets OV; Korendovych IV
    ChemCatChem; 2019 Mar; 11(5):1425-1430. PubMed ID: 31788134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of protein dynamics on the success of computational enzyme design.
    Ruscio JZ; Kohn JE; Ball KA; Head-Gordon T
    J Am Chem Soc; 2009 Oct; 131(39):14111-5. PubMed ID: 19788332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold.
    Basler S; Studer S; Zou Y; Mori T; Ota Y; Camus A; Bunzel HA; Helgeson RC; Houk KN; Jiménez-Osés G; Hilvert D
    Nat Chem; 2021 Mar; 13(3):231-235. PubMed ID: 33526894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational tools for designing and engineering biocatalysts.
    Damborsky J; Brezovsky J
    Curr Opin Chem Biol; 2009 Feb; 13(1):26-34. PubMed ID: 19297237
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design of protein catalysts.
    Hilvert D
    Annu Rev Biochem; 2013; 82():447-70. PubMed ID: 23746259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations.
    Tomatis PE; Rasia RM; Segovia L; Vila AJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13761-6. PubMed ID: 16172409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Minimalist active-site redesign: teaching old enzymes new tricks.
    Toscano MD; Woycechowsky KJ; Hilvert D
    Angew Chem Int Ed Engl; 2007; 46(18):3212-36. PubMed ID: 17450624
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Origin of the activity drop with the E50D variant of catalytic antibody 34E4 for Kemp elimination.
    Alexandrova AN; Jorgensen WL
    J Phys Chem B; 2009 Jan; 113(2):497-504. PubMed ID: 19132861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.