These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36012310)

  • 1. Antifungal Substances Produced by
    Wang Y; Zhang F; Wang C; Guo P; Han Y; Zhang Y; Sun B; Shan S; Ruan W; Pan J
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Volatile Organic Compounds Produced by Xenorhabdus indica Strain AB and Investigation of Their Antifungal Activities.
    Baiome BA; Ye X; Yuan Z; Gaafar YZA; Melak S; Cao H
    Appl Environ Microbiol; 2022 Jul; 88(13):e0015522. PubMed ID: 35727028
    [No Abstract]   [Full Text] [Related]  

  • 3. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides.
    Guevara-Avendaño E; Bejarano-Bolívar AA; Kiel-Martínez AL; Ramírez-Vázquez M; Méndez-Bravo A; von Wobeser EA; Sánchez-Rangel D; Guerrero-Analco JA; Eskalen A; Reverchon F
    Microbiol Res; 2019 Feb; 219():74-83. PubMed ID: 30642469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth.
    Chaves-López C; Serio A; Gianotti A; Sacchetti G; Ndagijimana M; Ciccarone C; Stellarini A; Corsetti A; Paparella A
    J Appl Microbiol; 2015 Aug; 119(2):487-99. PubMed ID: 25989039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto.
    Sánchez-Ortiz BL; Sánchez-Fernández RE; Duarte G; Lappe-Oliveras P; Macías-Rubalcava ML
    J Appl Microbiol; 2016 May; 120(5):1313-25. PubMed ID: 26920072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback.
    Báez-Vallejo N; Camarena-Pozos DA; Monribot-Villanueva JL; Ramírez-Vázquez M; Carrión-Villarnovo GL; Guerrero-Analco JA; Partida-Martínez LP; Reverchon F
    Microbiol Res; 2020 May; 235():126440. PubMed ID: 32109690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusible and volatile organic compounds produced by avocado rhizobacteria exhibit antifungal effects against Fusarium kuroshium.
    Guevara-Avendaño E; Bravo-Castillo KR; Monribot-Villanueva JL; Kiel-Martínez AL; Ramírez-Vázquez M; Guerrero-Analco JA; Reverchon F
    Braz J Microbiol; 2020 Sep; 51(3):861-873. PubMed ID: 32166656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal potential of Lauraceae rhizobacteria from a tropical montane cloud forest against Fusarium spp.
    Reverchon F; García-Quiroz W; Guevara-Avendaño E; Solís-García IA; Ferrera-Rodríguez O; Lorea-Hernández F
    Braz J Microbiol; 2019 Jul; 50(3):583-592. PubMed ID: 31119710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of volatilomes emitted during cross-talking of plant-growth-promoting bacteria and the phytopathogen, Fusarium solani.
    Ana AG; Carrillo-Cerda HA; Rodriguez-Campos J; Velázquez-Fernández JB; Patrón-Soberano OA; Contreras-Ramos SM
    World J Microbiol Biotechnol; 2020 Sep; 36(10):152. PubMed ID: 32924087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii.
    Sajnaga E; Kazimierczak W; Skowronek M; Lis M; Skrzypek T; Waśko A
    Arch Microbiol; 2018 Nov; 200(9):1307-1316. PubMed ID: 29946739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense.
    Yuan J; Raza W; Shen Q; Huang Q
    Appl Environ Microbiol; 2012 Aug; 78(16):5942-4. PubMed ID: 22685147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable virulence phenotype of Xenorhabdus bovienii (γ-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts.
    McMullen JG; McQuade R; Ogier JC; Pagès S; Gaudriault S; Patricia Stock S
    Microbiology (Reading); 2017 Apr; 163(4):510-522. PubMed ID: 28430102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of volatile organic compounds from Streptomyces albulus NJZJSA2 on growth of two fungal pathogens.
    Wu Y; Yuan J; E Y; Raza W; Shen Q; Huang Q
    J Basic Microbiol; 2015 Sep; 55(9):1104-17. PubMed ID: 26059065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii.
    Cimen H; Touray M; Gulsen SH; Erincik O; Wenski SL; Bode HB; Shapiro-Ilan D; Hazir S
    Appl Microbiol Biotechnol; 2021 Jul; 105(13):5517-5528. PubMed ID: 34250572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species.
    Bisch G; Ogier JC; Médigue C; Rouy Z; Vincent S; Tailliez P; Givaudan A; Gaudriault S
    Genome Biol Evol; 2016 Jan; 8(1):148-60. PubMed ID: 26769959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes.
    Sugar DR; Murfin KE; Chaston JM; Andersen AW; Richards GR; deLéon L; Baum JA; Clinton WP; Forst S; Goldman BS; Krasomil-Osterfeld KC; Slater S; Stock SP; Goodrich-Blair H
    Environ Microbiol; 2012 Apr; 14(4):924-39. PubMed ID: 22151385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and phenotypic characterization of Xenorhabdus bovienii symbiotically associated with Steinernema silvaticum.
    Kazimierczak W; Sajnaga E; Skowronek M; Kreft AM; Skrzypek HW; Wiater A
    Arch Microbiol; 2016 Dec; 198(10):995-1003. PubMed ID: 27342112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. R-type bacteriocins in related strains of Xenorhabdus bovienii: Xenorhabdicin tail fiber modularity and contribution to competitiveness.
    Ciezki K; Murfin K; Goodrich-Blair H; Stock SP; Forst S
    FEMS Microbiol Lett; 2017 Jan; 364(1):. PubMed ID: 27737947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofumigation activities of volatile compounds from two Trichoderma afroharzianum strains against Fusarium infections in fresh chilies.
    Khruengsai S; Pripdeevech P; D'Souza PE; Panuwet P
    J Sci Food Agric; 2021 Nov; 101(14):5861-5871. PubMed ID: 33788973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens.
    Wu Y; Zhou J; Li C; Ma Y
    Microbiologyopen; 2019 Aug; 8(8):e00813. PubMed ID: 30907064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.