These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 36012361)

  • 21. Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria.
    Zhao X; Tang H; Jiang X
    ACS Nano; 2022 Jul; 16(7):10066-10087. PubMed ID: 35776694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications.
    Ren R; Lim C; Li S; Wang Y; Song J; Lin TW; Muir BW; Hsu HY; Shen HH
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trends in Photothermal Nanostructures for Antimicrobial Applications.
    Dediu V; Ghitman J; Gradisteanu Pircalabioru G; Chan KH; Iliescu FS; Iliescu C
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives.
    Hetta HF; Ramadan YN; Al-Harbi AI; A Ahmed E; Battah B; Abd Ellah NH; Zanetti S; Donadu MG
    Biomedicines; 2023 Jan; 11(2):. PubMed ID: 36830949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Black phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections.
    Naskar A; Kim KS
    Microb Pathog; 2019 Dec; 137():103800. PubMed ID: 31610220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multifunctional platform with single-NIR-laser-triggered photothermal and NO release for synergistic therapy against multidrug-resistant Gram-negative bacteria and their biofilms.
    Zhao B; Wang H; Dong W; Cheng S; Li H; Tan J; Zhou J; He W; Li L; Zhang J; Luo G; Qian W
    J Nanobiotechnology; 2020 Apr; 18(1):59. PubMed ID: 32293461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.
    Gurunathan S; Han JW; Dayem AA; Eppakayala V; Kim JH
    Int J Nanomedicine; 2012; 7():5901-14. PubMed ID: 23226696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antimicrobial Properties of 2D MnO
    Alimohammadi F; Sharifian Gh M; Attanayake NH; Thenuwara AC; Gogotsi Y; Anasori B; Strongin DR
    Langmuir; 2018 Jun; 34(24):7192-7200. PubMed ID: 29782792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Killing dental pathogens using antibacterial graphene oxide.
    He J; Zhu X; Qi Z; Wang C; Mao X; Zhu C; He Z; Li M; Tang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5605-11. PubMed ID: 25705785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antibacterial effects of graphene- and carbon-nanotube-based nanohybrids on Escherichia coli: Implications for treating multidrug-resistant bacteria.
    Baek S; Joo SH; Su C; Toborek M
    J Environ Manage; 2019 Oct; 247():214-223. PubMed ID: 31247368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene-Based Antimicrobial Biomedical Surfaces.
    Pandit S; Gaska K; Kádár R; Mijakovic I
    Chemphyschem; 2021 Feb; 22(3):250-263. PubMed ID: 33244859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.
    Lu X; Feng X; Werber JR; Chu C; Zucker I; Kim JH; Osuji CO; Elimelech M
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9793-E9801. PubMed ID: 29078354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon Nanomaterials and LED Irradiation as Antibacterial Strategies against Gram-Positive Multidrug-Resistant Pathogens.
    Elias L; Taengua R; Frígols B; Salesa B; Serrano-Aroca Á
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31340560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of Antibiofilm Nanocomposites: Ag/Cu Bimetallic Nanoparticles Synthesized on the Surface of Graphene Oxide Nanosheets.
    Jang J; Lee JM; Oh SB; Choi Y; Jung HS; Choi J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35826-35834. PubMed ID: 32667802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Progress in Two-Dimensional Antimicrobial Nanomaterials.
    Miao H; Teng Z; Wang C; Chong H; Wang G
    Chemistry; 2019 Jan; 25(4):929-944. PubMed ID: 30030852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-pathogenic activity of graphene nanomaterials: A review.
    Seifi T; Kamali AR
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111509. PubMed ID: 33340933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays.
    Kiani F; Astani NA; Rahighi R; Tayyebi A; Tayebi M; Khezri J; Hashemi E; Rothlisberger U; Simchi A
    J Colloid Interface Sci; 2018 Jul; 521():119-131. PubMed ID: 29558691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms.
    Yu CH; Chen GY; Xia MY; Xie Y; Chi YQ; He ZY; Zhang CL; Zhang T; Chen QM; Peng Q
    Colloids Surf B Biointerfaces; 2020 Jul; 191():111009. PubMed ID: 32305622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-Functionalized Biomimetic Scaffolds for Tissue Regeneration.
    Shin YC; Song SJ; Hong SW; Oh JW; Hwang YS; Choi YS; Han DW
    Adv Exp Med Biol; 2018; 1064():73-89. PubMed ID: 30471027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances on graphene-based nanomaterials for biomedical applications.
    Qu Y; He F; Yu C; Liang X; Liang D; Ma L; Zhang Q; Lv J; Wu J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():764-780. PubMed ID: 29853147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.