These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36012394)
21. Preparation and characterization of selenium nanoparticles decorated by Spirulina platensis polysaccharide. Zhang X; Yan H; Ma L; Zhang H; Ren DF J Food Biochem; 2020 Sep; 44(9):e13363. PubMed ID: 32648615 [TBL] [Abstract][Full Text] [Related]
22. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. Gao X; Li X; Mu J; Ho CT; Su J; Zhang Y; Lin X; Chen Z; Li B; Xie Y Int J Biol Macromol; 2020 Jun; 152():605-615. PubMed ID: 32087224 [TBL] [Abstract][Full Text] [Related]
23. Phytofabrication of Selenium Nanoparticles From Gunti L; Dass RS; Kalagatur NK Front Microbiol; 2019; 10():931. PubMed ID: 31114564 [TBL] [Abstract][Full Text] [Related]
24. Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities. Alvi GB; Iqbal MS; Ghaith MMS; Haseeb A; Ahmed B; Qadir MI Sci Rep; 2021 Feb; 11(1):4811. PubMed ID: 33637796 [TBL] [Abstract][Full Text] [Related]
25. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Lampis S; Zonaro E; Bertolini C; Bernardi P; Butler CS; Vallini G Microb Cell Fact; 2014 Mar; 13(1):35. PubMed ID: 24606965 [TBL] [Abstract][Full Text] [Related]
26. Green Synthesis of Selenium Nanoparticles by Cyanobacterium Alipour S; Kalari S; Morowvat MH; Sabahi Z; Dehshahri A Biomed Res Int; 2021; 2021():6635297. PubMed ID: 34195275 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Chen W; Li Y; Yang S; Yue L; Jiang Q; Xia W Carbohydr Polym; 2015 Nov; 132():574-81. PubMed ID: 26256384 [TBL] [Abstract][Full Text] [Related]
28. β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds. Malapert A; Tomao V; Margier M; Nowicki M; Gleize B; Dangles O; Reboul E Nutrients; 2018 Nov; 10(11):. PubMed ID: 30400310 [TBL] [Abstract][Full Text] [Related]
29. Enhancing the Activity of Carboxymethyl Cellulase Enzyme Using Highly Stable Selenium Nanoparticles Biosynthesized by Wang Y; Yu Y; Duan Y; Wang Q; Cong X; He Y; Gao C; Hafeez M; Jan S; Rasheed SM; Cheng S; Wang Z Molecules; 2022 Jul; 27(14):. PubMed ID: 35889450 [TBL] [Abstract][Full Text] [Related]
30. Exhibiting the diagnostic face of selenium nanoparticles as a radio-platform for tumor imaging. Korany M; Marzook F; Mahmoud B; Ahmed SA; Ayoub SM; Sakr TM Bioorg Chem; 2020 Jul; 100():103910. PubMed ID: 32388424 [TBL] [Abstract][Full Text] [Related]
31. The Influence of Synthesis Conditions on the Antioxidant Activity of Selenium Nanoparticles. Sentkowska A; Pyrzyńska K Molecules; 2022 Apr; 27(8):. PubMed ID: 35458683 [TBL] [Abstract][Full Text] [Related]
32. Selenium nanoparticles with photocatalytic properties synthesized by residual activated sludge. Lian S; Fan S; Yang Y; Yu B; Dai C; Qu Y Sci Total Environ; 2022 Feb; 809():151163. PubMed ID: 34699821 [TBL] [Abstract][Full Text] [Related]
33. Stability and surface properties of selenium nanoparticles coated with chitosan and sodium carboxymethyl cellulose. Chen Y; Stoll S; Sun H; Liu X; Liu W; Leng X Carbohydr Polym; 2022 Feb; 278():118859. PubMed ID: 34973724 [TBL] [Abstract][Full Text] [Related]
34. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. Zhai X; Zhang C; Zhao G; Stoll S; Ren F; Leng X J Nanobiotechnology; 2017 Jan; 15(1):4. PubMed ID: 28056992 [TBL] [Abstract][Full Text] [Related]
35. Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate. Borah SN; Goswami L; Sen S; Sachan D; Sarma H; Montes M; Peralta-Videa JR; Pakshirajan K; Narayan M Environ Pollut; 2021 Sep; 285():117519. PubMed ID: 34380220 [TBL] [Abstract][Full Text] [Related]
36. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Zhang C; Zhai X; Zhao G; Ren F; Leng X Carbohydr Polym; 2015 Dec; 134():158-66. PubMed ID: 26428112 [TBL] [Abstract][Full Text] [Related]
37. Micronization increases the bioaccessibility of polyphenols from granulometrically separated olive pomace fractions. Sefrin Speroni C; Rigo Guerra D; Beutinger Bender AB; Stiebe J; Ballus CA; Picolli da Silva L; Lozano-Sánchez J; Emanuelli T Food Chem; 2021 May; 344():128689. PubMed ID: 33277120 [TBL] [Abstract][Full Text] [Related]
38. Food (Matrix) Effects on Bioaccessibility and Intestinal Permeability of Major Olive Antioxidants. Vitali Čepo D; Radić K; Turčić P; Anić D; Komar B; Šalov M Foods; 2020 Dec; 9(12):. PubMed ID: 33317079 [TBL] [Abstract][Full Text] [Related]
39. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Qiu WY; Wang YY; Wang M; Yan JK Colloids Surf B Biointerfaces; 2018 Oct; 170():692-700. PubMed ID: 29986266 [TBL] [Abstract][Full Text] [Related]
40. Green Synthesis of Selenium Nanoparticles using Green Coffee Beans: An Optimization Study. Baluken P; Kamiloglu A; Kutlu N Chem Biodivers; 2024 Mar; 21(3):e202301250. PubMed ID: 38359016 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]