These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36012396)

  • 1. Rapid Colorimetric Detection of Wound Infection with a Fluidic Paper Device.
    Hoyo J; Bassegoda A; Ferreres G; Hinojosa-Caballero D; Gutiérrez-Capitán M; Baldi A; Fernández-Sánchez C; Tzanov T
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New myeloperoxidase detection system based on enzyme-catalysed oxidative synthesis of a dye for paper-based diagnostic devices.
    Bassegoda A; Ferreres G; Pérez-Rafael S; Hinojosa-Caballero D; Torrent-Burgués J; Tzanov T
    Talanta; 2019 Mar; 194():469-474. PubMed ID: 30609560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel peptidoglycan-based diagnostic devices for detection of wound infection.
    Hasmann A; Wehrschuetz-Sigl E; Kanzler G; Gewessler U; Hulla E; Schneider KP; Binder B; Schintler M; Guebitz GM
    Diagn Microbiol Infect Dis; 2011 Sep; 71(1):12-23. PubMed ID: 21388768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myeloperoxidase-responsive materials for infection detection based on immobilized aminomethoxyphenol.
    Schiffer D; Tegl G; Vielnascher R; Weber H; Herrero-Rollett A; Sigl E; Heinzle A; Guebitz GM
    Biotechnol Bioeng; 2016 Dec; 113(12):2553-2560. PubMed ID: 27241438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of myeloperoxidase activity in wound fluids as a marker of infection.
    Hasmann A; Wehrschuetz-Sigl E; Marold A; Wiesbauer H; Schoeftner R; Gewessler U; Kandelbauer A; Schiffer D; Schneider KP; Binder B; Schintler M; Guebitz GM
    Ann Clin Biochem; 2013 May; 50(Pt 3):245-54. PubMed ID: 23404930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical quantification of biomarker myeloperoxidase.
    Hoyo J; Bassegoda A; Tzanov T
    Z Naturforsch C J Biosci; 2022 Jul; 77(7-8):297-302. PubMed ID: 35191282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel protease-based diagnostic devices for detection of wound infection.
    Heinzle A; Papen-Botterhuis NE; Schiffer D; Schneider KP; Binder B; Schintler M; Haaksman IK; Lenting HB; Gübitz GM; Sigl E
    Wound Repair Regen; 2013; 21(3):482-9. PubMed ID: 23627267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Paper-Based Analytical Devices for Colorimetric Detection of Lactoferrin.
    Kudo H; Maejima K; Hiruta Y; Citterio D
    SLAS Technol; 2020 Feb; 25(1):47-57. PubMed ID: 31658890
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Thet NT; Mercer-Chalmers J; Greenwood RJ; Young AER; Coy K; Booth S; Sack A; Jenkins ATA
    ACS Sens; 2020 Aug; 5(8):2652-2657. PubMed ID: 32786390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic Accuracy of Point-of-Care Fluorescence Imaging for the Detection of Bacterial Burden in Wounds: Results from the 350-Patient Fluorescence Imaging Assessment and Guidance Trial.
    Le L; Baer M; Briggs P; Bullock N; Cole W; DiMarco D; Hamil R; Harrell K; Kasper M; Li W; Patel K; Sabo M; Thibodeaux K; Serena TE
    Adv Wound Care (New Rochelle); 2021 Mar; 10(3):123-136. PubMed ID: 32870774
    [No Abstract]   [Full Text] [Related]  

  • 11. Rapid detection of biofilm with modified alcian blue staining: In-vitro protocol improvement and validation with clinical cases.
    Wu YF; Lee TY; Liao WT; Chuan HH; Cheng NC; Cheng CM
    Wound Repair Regen; 2020 Nov; 28(6):834-843. PubMed ID: 32691440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection.
    Kou X; Tong L; Shen Y; Zhu W; Yin L; Huang S; Zhu F; Chen G; Ouyang G
    Biosens Bioelectron; 2020 May; 156():112095. PubMed ID: 32174563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper-based human neutrophil elastase detection device for clinical wound monitoring.
    Yang T; Pan SC; Cheng CM
    Lab Chip; 2020 Aug; 20(15):2709-2716. PubMed ID: 32573571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel field amplification for sensitive colorimetric detection of microalbuminuria on a paper-based analytical device.
    Cai Y; Niu JC; Du XL; Fang F; Wu ZY
    Anal Chim Acta; 2019 Nov; 1080():146-152. PubMed ID: 31409464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper-based colorimetric sensors for point-of-care testing.
    Ko A; Liao C
    Anal Methods; 2023 Sep; 15(35):4377-4404. PubMed ID: 37641934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Simple Paper-based Colorimetric Device for Rapid and Sensitive Urinary Oxalate Determinations.
    Worramongkona P; Seeda K; Phansomboon P; Ratnarathorn N; Chailapakul O; Dungchai W
    Anal Sci; 2018; 34(1):103-108. PubMed ID: 29321449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan based substrates for wound infection detection based on increased lysozyme activity.
    Tegl G; Rollett A; Dopplinger J; Gamerith C; Guebitz GM
    Carbohydr Polym; 2016 Oct; 151():260-267. PubMed ID: 27474566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Point-of-care fluorescence imaging predicts the presence of pathogenic bacteria in wounds: a clinical study.
    Rennie MY; Lindvere-Teene L; Tapang K; Linden R
    J Wound Care; 2017 Aug; 26(8):452-460. PubMed ID: 28795890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review.
    Yang J; Wang K; Xu H; Yan W; Jin Q; Cui D
    Talanta; 2019 Sep; 202():96-110. PubMed ID: 31171232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric cellulose-based test-strip for rapid detection of amyloid β-42.
    Moreira FTC; Correia BP; Sousa MP; Sales GF
    Mikrochim Acta; 2021 Sep; 188(10):334. PubMed ID: 34498145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.