These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 36012598)

  • 1. Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals.
    Skuza L; Szućko-Kociuba I; Filip E; Bożek I
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
    Rascio N; Navari-Izzo F
    Plant Sci; 2011 Feb; 180(2):169-81. PubMed ID: 21421358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.
    Yang X; Feng Y; He Z; Stoffella PJ
    J Trace Elem Med Biol; 2005; 18(4):339-53. PubMed ID: 16028496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils.
    Bian F; Zhong Z; Zhang X; Yang C; Gai X
    Chemosphere; 2020 May; 246():125750. PubMed ID: 31891850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.
    Rehman MZU; Rizwan M; Ali S; Ok YS; Ishaque W; Saifullah ; Nawaz MF; Akmal F; Waqar M
    Ecotoxicol Environ Saf; 2017 Sep; 143():236-248. PubMed ID: 28551581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of soil metals.
    Chaney RL; Malik M; Li YM; Brown SL; Brewer EP; Angle JS; Baker AJ
    Curr Opin Biotechnol; 1997 Jun; 8(3):279-84. PubMed ID: 9206007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.
    Jing YD; He ZL; Yang XE
    J Zhejiang Univ Sci B; 2007 Mar; 8(3):192-207. PubMed ID: 17323432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proteomics of heavy metal hyperaccumulation by plants.
    Visioli G; Marmiroli N
    J Proteomics; 2013 Feb; 79():133-45. PubMed ID: 23268120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative understanding of metal hyperaccumulation in plants: a mini-review.
    Peng JS; Guan YH; Lin XJ; Xu XJ; Xiao L; Wang HH; Meng S
    Environ Geochem Health; 2021 Apr; 43(4):1599-1607. PubMed ID: 32060864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on bioremediation approach for heavy metal detoxification and accumulation in plants.
    Yaashikaa PR; Kumar PS; Jeevanantham S; Saravanan R
    Environ Pollut; 2022 May; 301():119035. PubMed ID: 35196562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling phytoremediation of heavy metal contaminated soils through machine learning.
    Shi L; Li J; Palansooriya KN; Chen Y; Hou D; Meers E; Tsang DCW; Wang X; Ok YS
    J Hazard Mater; 2023 Jan; 441():129904. PubMed ID: 36096061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site.
    Lorestani B; Cheraghi M; Yousefi N
    Int J Phytoremediation; 2012 Sep; 14(8):786-95. PubMed ID: 22908644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizosphere microbiome of plants used in phytoremediation of mine tailing dams.
    Doku ET; Sylverken AA; Belford JDE
    Int J Phytoremediation; 2024 Jun; 26(8):1212-1220. PubMed ID: 38214673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Phytoremediation of heavy metal contamination and related molecular mechanisms in plants].
    Wang P; Chao D
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):426-435. PubMed ID: 32237537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of toxic metals from soil and waste water.
    Hooda V
    J Environ Biol; 2007 Apr; 28(2 Suppl):367-76. PubMed ID: 17929752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.
    Fasani E; Manara A; Martini F; Furini A; DalCorso G
    Plant Cell Environ; 2018 May; 41(5):1201-1232. PubMed ID: 28386947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.