These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 36012598)

  • 21. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Approaches for enhanced phytoextraction of heavy metals.
    Bhargava A; Carmona FF; Bhargava M; Srivastava S
    J Environ Manage; 2012 Aug; 105():103-20. PubMed ID: 22542973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi.
    Zheng J; Xie X; Li C; Wang H; Yu Y; Huang B
    Int J Phytoremediation; 2023; 25(12):1596-1613. PubMed ID: 36786203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review.
    Manoj SR; Karthik C; Kadirvelu K; Arulselvi PI; Shanmugasundaram T; Bruno B; Rajkumar M
    J Environ Manage; 2020 Jan; 254():109779. PubMed ID: 31726280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoremediation of heavy metals--concepts and applications.
    Ali H; Khan E; Sajad MA
    Chemosphere; 2013 May; 91(7):869-81. PubMed ID: 23466085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review.
    Ashraf MA; Hussain I; Rasheed R; Iqbal M; Riaz M; Arif MS
    J Environ Manage; 2017 Aug; 198(Pt 1):132-143. PubMed ID: 28456029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.
    Boechat CL; Pistóia VC; Gianelo C; Camargo FA
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2371-80. PubMed ID: 26411450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants.
    Corso M; García de la Torre VS
    Metallomics; 2020 Jun; 12(6):840-859. PubMed ID: 32432639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent.
    Sainger PA; Dhankhar R; Sainger M; Kaushik A; Singh RP
    Ecotoxicol Environ Saf; 2011 Nov; 74(8):2284-91. PubMed ID: 21820739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.
    Miransari M
    Biotechnol Adv; 2011; 29(6):645-53. PubMed ID: 21557996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Application potential of siderophore-producing rhizobacteria in phytoremediation of heavy metals-contaminated soils: a review].
    Wang YL; Lin QQ; Li Y; Yang XH; Wang SZ; Qiu RL
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):2081-8. PubMed ID: 24175543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotechnological approaches for enhancement of heavy metal phytoremediation capacity of plants.
    Shourie A; Mazahar S; Singh A
    Environ Monit Assess; 2024 Aug; 196(9):789. PubMed ID: 39105824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of intercropping on safe agricultural production and phytoremediation of heavy metal-contaminated soils.
    Liu Y; Huang L; Wen Z; Fu Y; Liu Q; Xu S; Li Z; Liu C; Yu C; Feng Y
    Sci Total Environ; 2023 Jun; 875():162700. PubMed ID: 36906036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.
    Fernández-Fuego D; Bertrand A; González A
    Environ Pollut; 2017 Dec; 231(Pt 1):1153-1162. PubMed ID: 28941719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.
    Kong Z; Glick BR
    Adv Microb Physiol; 2017; 71():97-132. PubMed ID: 28760324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoextraction of metals and metalloids from contaminated soils.
    McGrath SP; Zhao FJ
    Curr Opin Biotechnol; 2003 Jun; 14(3):277-82. PubMed ID: 12849780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Role and Mechanism of Low Molecular-Weight-Organic Acids in Enhanced Phytoremediation of Heavy Metal Contaminated Soil].
    Fang ZG; Xie JT; Yang Q; Lu YZ; Huang H; Zhu YX; Yin SM; Wu XT; Du ST
    Huan Jing Ke Xue; 2022 Oct; 43(10):4669-4678. PubMed ID: 36224152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.