These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 36012942)
1. Olive Pomace Phenolic Compounds: From an Agro-Industrial By-Product to a Promising Ocular Surface Protection for Dry Eye Disease. Katsinas N; Gehlsen U; García-Posadas L; Rodríguez-Rojo S; Steven P; González-García MJ; Enríquez-de-Salamanca A J Clin Med; 2022 Aug; 11(16):. PubMed ID: 36012942 [TBL] [Abstract][Full Text] [Related]
2. Olive Pomace Phenolic Compounds and Extracts Can Inhibit Inflammatory- and Oxidative-Related Diseases of Human Ocular Surface Epithelium. Katsinas N; Rodríguez-Rojo S; Enríquez-de-Salamanca A Antioxidants (Basel); 2021 Jul; 10(7):. PubMed ID: 34356385 [TBL] [Abstract][Full Text] [Related]
3. Effect of desiccating environmental stress versus systemic muscarinic AChR blockade on dry eye immunopathogenesis. Chen Y; Chauhan SK; Lee HS; Stevenson W; Schaumburg CS; Sadrai Z; Saban DR; Kodati S; Stern ME; Dana R Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2457-64. PubMed ID: 23482465 [TBL] [Abstract][Full Text] [Related]
4. Topical Quercetin and Resveratrol Protect the Ocular Surface in Experimental Dry Eye Disease. Abengózar-Vela A; Schaumburg CS; Stern ME; Calonge M; Enríquez-de-Salamanca A; González-García MJ Ocul Immunol Inflamm; 2019; 27(6):1023-1032. PubMed ID: 30096001 [No Abstract] [Full Text] [Related]
5. Manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin, a superoxide dismutase mimetic, reduces disease severity in in vitro and in vivo models for dry-eye disease. Žiniauskaitė A; Ragauskas S; Ghosh AK; Thapa R; Roessler AE; Koulen P; Kalesnykas G; Hakkarainen JJ; Kaja S Ocul Surf; 2019 Apr; 17(2):257-264. PubMed ID: 30807830 [TBL] [Abstract][Full Text] [Related]
6. Tear production and ocular surface changes in experimental dry eye after elimination of desiccating stress. Yoon KC; Ahn KY; Choi W; Li Z; Choi JS; Lee SH; Park SH Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7267-73. PubMed ID: 21849424 [TBL] [Abstract][Full Text] [Related]
7. Olive Pomace Phenolic Compounds Stability and Safety Evaluation: From Raw Material to Future Ophthalmic Applications. Katsinas N; Enríquez-de-Salamanca A; Bento da Silva A; Bronze MR; Rodríguez-Rojo S Molecules; 2021 Oct; 26(19):. PubMed ID: 34641545 [TBL] [Abstract][Full Text] [Related]
8. Topical Application of Mizoribine Suppresses CD4+ T-cell-Mediated Pathogenesis in Murine Dry Eye. Zhang X; Lin X; Liu Z; Wu Y; Yang Y; Ouyang W; Li W; Liu Z Invest Ophthalmol Vis Sci; 2017 Dec; 58(14):6056-6064. PubMed ID: 29204644 [TBL] [Abstract][Full Text] [Related]
9. Sjögren's syndrome associated dry eye in a mouse model is ameliorated by topical application of integrin α4 antagonist GW559090. Contreras-Ruiz L; Mir FA; Turpie B; Krauss AH; Masli S Exp Eye Res; 2016 Feb; 143():1-8. PubMed ID: 26463157 [TBL] [Abstract][Full Text] [Related]
10. Expression of toll-like receptor 4 contributes to corneal inflammation in experimental dry eye disease. Lee HS; Hattori T; Park EY; Stevenson W; Chauhan SK; Dana R Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5632-40. PubMed ID: 22789921 [TBL] [Abstract][Full Text] [Related]
11. Nutraceutical potential of olive pomace: insights from cell-based and clinical studies. Monteiro CS; Adedara IA; Farombi EO; Emanuelli T J Sci Food Agric; 2024 May; 104(7):3807-3815. PubMed ID: 38270195 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Trehalose/Hyaluronic Acid (HA) vs. 0.001% Hydrocortisone/HA Eyedrops on Signs and Inflammatory Markers in a Desiccating Model of Dry Eye Disease (DED). Astolfi G; Lorenzini L; Gobbo F; Sarli G; Versura P J Clin Med; 2022 Mar; 11(6):. PubMed ID: 35329844 [TBL] [Abstract][Full Text] [Related]
13. Factors predicting the ocular surface response to desiccating environmental stress. Alex A; Edwards A; Hays JD; Kerkstra M; Shih A; de Paiva CS; Pflugfelder SC Invest Ophthalmol Vis Sci; 2013 May; 54(5):3325-32. PubMed ID: 23572103 [TBL] [Abstract][Full Text] [Related]
15. Topical application of cannabinoid-ligands ameliorates experimental dry-eye disease. Tran BN; Maass M; Musial G; Stern ME; Gehlsen U; Steven P Ocul Surf; 2022 Jan; 23():131-139. PubMed ID: 34922011 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Aberrant α(1,2)-Fucosylation at Ocular Surface Ameliorates Dry Eye Disease. Yoon CH; Ryu JS; Ko JH; Oh JY Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360627 [TBL] [Abstract][Full Text] [Related]
17. Calcineurin Inhibitor Voclosporin Preserves Corneal Barrier and Conjunctival Goblet Cells in Experimental Dry Eye. Alam J; de Souza RG; Yu Z; Stern ME; de Paiva CS; Pflugfelder SC J Ocul Pharmacol Ther; 2020 Nov; 36(9):679-685. PubMed ID: 32721249 [No Abstract] [Full Text] [Related]
18. The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. Madureira J; Dias MI; Pinela J; Calhelha RC; Barros L; Santos-Buelga C; Margaça FMA; Ferreira ICFR; Cabo Verde S Sci Total Environ; 2020 Jul; 727():138706. PubMed ID: 32330728 [TBL] [Abstract][Full Text] [Related]
19. Inducing dry eye disease using a custom engineered desiccation system: Impact on the ocular surface including keratin-14-positive limbal epithelial stem cells. Zhang R; Pandzic E; Park M; Wakefield D; Di Girolamo N Ocul Surf; 2021 Jul; 21():145-159. PubMed ID: 33930539 [TBL] [Abstract][Full Text] [Related]
20. Hydroxytyrosol recovery from olive pomace: a simple process using olive mill industrial equipment and membrane technology. Romeu MFC; Bernardo J; Daniel CI; Costa N; Crespo JG; Silva Pinto L; Nunes da Ponte M; Nunes AVM J Food Sci Technol; 2024 Jan; 61(1):161-168. PubMed ID: 38192711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]