These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3601352)

  • 1. Human fetal lens: wet and dry weight with increasing gestational age.
    Bours J; Födisch HJ
    Ophthalmic Res; 1986; 18(6):363-8. PubMed ID: 3601352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemistry of the ageing rat lens. I. Lens wet weight and lens dry weight with respect to sex differences.
    Bours J; Hockwin O; Fink H
    Ophthalmic Res; 1983; 15(4):198-203. PubMed ID: 6634054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in water and crystallin content of the fetal and adult human lens, demonstrated by a microsectioning technique.
    Bours J; Födisch HJ; Hockwin O
    Ophthalmic Res; 1987; 19(4):235-9. PubMed ID: 3320839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble and insoluble crystallins of the developing human fetal lens, analyzed by agarose/polyacrylamide thin-layer isoelectric focusing.
    Ahrend MH; Bours J; Födisch HJ
    Ophthalmic Res; 1987; 19(3):150-6. PubMed ID: 3658325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of the human eye lens.
    Augusteyn RC
    Mol Vis; 2007 Feb; 13():252-7. PubMed ID: 17356512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative investigations on water-soluble crystallins of the embryonic, fetal, and postnatal human lens during development and ageing.
    Trifonova N; Stamenova M; Boulanov I; Goranov M; Bours J
    Ger J Ophthalmol; 1996 Nov; 5(6):454-60. PubMed ID: 9479536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the relationship between rabbit age and lens dry weight: improved determination of the age of rabbits in the wild.
    Augusteyn RC
    Mol Vis; 2007 Oct; 13():2030-4. PubMed ID: 17982428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lens artifacts in human fetal eyes - the challenge of interpreting the histomorphology of human fetal lenses.
    Herwig MC; Müller AM; Klarmann-Schulz U; Holz FG; Loeffler KU
    Graefes Arch Clin Exp Ophthalmol; 2014 Jan; 252(1):155-62. PubMed ID: 24193350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of fetal guinea pig: physical and chemical characteristics.
    Sparks JW; Girard JR; Callikan S; Battaglia FC
    Am J Physiol; 1985 Jan; 248(1 Pt 1):E132-9. PubMed ID: 3966546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weight changes of rhombencephalon and eye lens in the developing bovine fetus.
    Hubbert WT; Hughes DE; Stalheim OH; Booth GD
    Am J Vet Res; 1974 Jun; 35(6):769-72. PubMed ID: 4836151
    [No Abstract]   [Full Text] [Related]  

  • 14. Hexokinase, glucose-6-phosphatase dehydrogenase and aldose reductase in human fetal lenses.
    Cao X; Chen Y; Liang S; Huang Q; Li S; Mao W
    Yan Ke Xue Bao; 1991 Mar; 7(1):31-3. PubMed ID: 1843127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent modification at the C-terminal end of a 9 kDa gamma D-crystallin fragment in human lenses.
    Srivastava OP; Srivastava K; Silney C
    Exp Eye Res; 1994 May; 58(5):595-603. PubMed ID: 7925697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on soluble proteins in human fetal lens].
    Cao X; Li S; Pan S; Liang S; Wu K; Huang Q
    Yan Ke Xue Bao; 1994 Dec; 10(4):236-40. PubMed ID: 7774699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical development in the foetal bovine lens.
    Pierscionek BK; Belaidi A; Bruun HH
    Exp Eye Res; 2003 Nov; 77(5):639-41. PubMed ID: 14550406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes of water-soluble proteins of human eye lens during the prenatal period.
    Trifonova NL; Alexiev C; Stamenova M; Goranov M
    Ophthalmic Res; 1993; 25(3):162-71. PubMed ID: 8336902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.