These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 36013591)
1. Gene Correlation Network Analysis to Identify Biomarkers of Peri-Implantitis. Sun B; Zhang W; Song X; Wu X Medicina (Kaunas); 2022 Aug; 58(8):. PubMed ID: 36013591 [No Abstract] [Full Text] [Related]
2. Identification of Potential Genetic Biomarkers and Target Genes of Peri-Implantitis Using Bioinformatics Tools. Zhang X; Wang Z; Hu L; Shen X; Liu C Biomed Res Int; 2021; 2021():1759214. PubMed ID: 34931168 [TBL] [Abstract][Full Text] [Related]
3. Identification of key genes and pathways for peri-implantitis through the analysis of gene expression data. Zhang H; Zhang X; Huang J; Fan X Exp Ther Med; 2017 May; 13(5):1832-1840. PubMed ID: 28565775 [TBL] [Abstract][Full Text] [Related]
4. Weighted Gene Coexpression Network Analysis Identified IL2/STAT5 Signaling Pathway as an Important Determinant of Peri-Implantitis. Tang L; Zhou H; Chen D; Xiang R; Tang J Comput Math Methods Med; 2022; 2022():4202823. PubMed ID: 36193198 [TBL] [Abstract][Full Text] [Related]
5. Renal tubular gen e biomarkers identification based on immune infiltrates in focal segmental glomerulosclerosis. Bai J; Pu X; Zhang Y; Dai E Ren Fail; 2022 Dec; 44(1):966-986. PubMed ID: 35713363 [TBL] [Abstract][Full Text] [Related]
6. Integrated analysis and exploration of potential shared gene signatures between carotid atherosclerosis and periodontitis. Zeng Y; Cao S; Chen M BMC Med Genomics; 2022 Oct; 15(1):227. PubMed ID: 36316672 [TBL] [Abstract][Full Text] [Related]
7. Assessment of Weighted Gene Co-Expression Network Analysis to Explore Key Pathways and Novel Biomarkers in Muscular Dystrophy. Xu X; Hao Y; Wu J; Zhao J; Xiong S Pharmgenomics Pers Med; 2021; 14():431-444. PubMed ID: 33883925 [TBL] [Abstract][Full Text] [Related]
8. Identification of key genes as potential diagnostic biomarkers in sepsis by bioinformatics analysis. Lin G; Li N; Liu J; Sun J; Zhang H; Gui M; Zeng Y; Tang J PeerJ; 2024; 12():e17542. PubMed ID: 38912048 [TBL] [Abstract][Full Text] [Related]
9. Identification of Oxidative Stress-Related Biomarkers in Diabetic Kidney Disease. Ma X; Zhang X; Leng T; Ma J; Yuan Z; Gu Y; Hu T; Liu Q; Shen T Evid Based Complement Alternat Med; 2022; 2022():1067504. PubMed ID: 36624863 [TBL] [Abstract][Full Text] [Related]
10. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study. Kong C; Zhu Y; Xie X; Wu J; Qian M Front Immunol; 2023; 14():1184700. PubMed ID: 37359526 [TBL] [Abstract][Full Text] [Related]
11. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
12. Co-expression modules construction by WGCNA and identify potential hub genes and regulation pathways of postpartum depression. Deng Z; Cai W; Liu J; Deng A; Yang Y; Tu J; Yuan C; Xiao H; Gao W Front Biosci (Landmark Ed); 2021 Nov; 26(11):1019-1030. PubMed ID: 34856750 [No Abstract] [Full Text] [Related]
13. Ageing-Associated Transcriptomic Alterations in Peri-Implantitis Pathology: A Bioinformatic Study. Tian Z Dis Markers; 2022; 2022():8456968. PubMed ID: 36267464 [TBL] [Abstract][Full Text] [Related]
14. Identification of Inflammation-Related Genes and Exploration of Regulatory Mechanisms in Patients with Osteonecrosis of the Femoral Head. Li T; Huang C; Ma J; Ding R; Zhang Q; Wang W Biomed Res Int; 2022; 2022():4501186. PubMed ID: 36193326 [TBL] [Abstract][Full Text] [Related]
15. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis. Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947 [TBL] [Abstract][Full Text] [Related]
16. Identification of vital modules and genes associated with heart failure based on weighted gene coexpression network analysis. Bian W; Wang Z; Li X; Jiang XX; Zhang H; Liu Z; Zhang DM ESC Heart Fail; 2022 Apr; 9(2):1370-1379. PubMed ID: 35128826 [TBL] [Abstract][Full Text] [Related]
17. Investigation of hub gene associated with the infection of Staphylococcus aureus via weighted gene co-expression network analysis. Li JX; Cao XJ; Huang YY; Li YP; Yu ZY; Lin M; Li QY; Chen JC; Guo XG BMC Microbiol; 2021 Dec; 21(1):329. PubMed ID: 34852788 [TBL] [Abstract][Full Text] [Related]
18. Identifying the hub gene and immune infiltration of Parkinson's disease using bioinformatical methods. Liu SH; Wang YL; Jiang SM; Wan XJ; Yan JH; Liu CF Brain Res; 2022 Jun; 1785():147879. PubMed ID: 35278479 [TBL] [Abstract][Full Text] [Related]
19. Identification of Differentially Expressed Genes and Signaling Pathways in Acute Myocardial Infarction Based on Integrated Bioinformatics Analysis. Chen DQ; Kong XS; Shen XB; Huang MZ; Zheng JP; Sun J; Xu SH Cardiovasc Ther; 2019; 2019():8490707. PubMed ID: 31772617 [TBL] [Abstract][Full Text] [Related]
20. Screening and Identification of Key Biomarkers in Inflammatory Breast Cancer Through Integrated Bioinformatic Analyses. Wu J; Lv Q; Huang H; Zhu M; Meng D Genet Test Mol Biomarkers; 2020 Aug; 24(8):484-491. PubMed ID: 32598242 [No Abstract] [Full Text] [Related] [Next] [New Search]