BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36013702)

  • 1. Study on the Effect of Hydrothermal Carbonization Parameters on Fuel Properties of Chicken Manure Hydrochar.
    Hejna M; Świechowski K; Rasaq WA; Białowiec A
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the Effect of Hydrothermal Carbonization Parameters on Fuel Properties of Sewage Sludge Hydrochar.
    Hejna M; Świechowski K; Białowiec A
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seawater as supplemental moisture: The effect of Co-hydrothermal carbonization products obtained from chicken manure and cornstalk.
    Li Z; Jia J; Zhao W; Jiang L; Tian W
    J Environ Manage; 2023 Nov; 345():118819. PubMed ID: 37597367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of cannabis waste via hydrothermal carbonization: solid fuel production and characterization.
    Kanchanatip E; Prasertsung N; Thasnas N; Grisdanurak N; Wantala K
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90318-90327. PubMed ID: 36370310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel.
    Lee J; Hong J; Jang D; Park KY
    J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: A new strategy for the integral valorization of biomass wastes.
    Ipiales RP; Mohedano AF; Diaz-Portuondo E; Diaz E; de la Rubia MA
    Waste Manag; 2023 Sep; 169():267-275. PubMed ID: 37481937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients.
    Belete YZ; Mau V; Yahav Spitzer R; Posmanik R; Jassby D; Iddya A; Kassem N; Tester JW; Gross A
    Bioresour Technol; 2021 Aug; 333():125164. PubMed ID: 33906016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate and multi-interface insights into carbon and energy recovery and conversion characteristics of hydrothermal carbonization of biomass waste from duck farm.
    Yan T; Zhang T; Wang S; Andrea K; Peng H; Yuan H; Zhu Z
    Waste Manag; 2023 Oct; 170():154-165. PubMed ID: 37582310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept.
    Sharma HB; Panigrahi S; Sarmah AK; Dubey BK
    Sci Total Environ; 2020 Mar; 706():135907. PubMed ID: 31846879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior.
    Lang Q; Guo Y; Zheng Q; Liu Z; Gai C
    Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of hydrochar and process water from the hydrothermal carbonization of Refuse Derived Fuel.
    Nobre C; Alves O; Durão L; Şen A; Vilarinho C; Gonçalves M
    Waste Manag; 2021 Feb; 120():303-313. PubMed ID: 33333468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative production of biochars from corn stalk and cow manure.
    Liu Z; Zhang Y; Liu Z
    Bioresour Technol; 2019 Nov; 291():121855. PubMed ID: 31357042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of temperature on the fuel properties of food waste and coal blend treated under co-hydrothermal carbonization.
    Ul Saqib N; Sarmah AK; Baroutian S
    Waste Manag; 2019 Apr; 89():236-246. PubMed ID: 31079736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo.
    Yang W; Wang H; Zhang M; Zhu J; Zhou J; Wu S
    Bioresour Technol; 2016 Apr; 205():199-204. PubMed ID: 26826960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved energy recovery from food waste through hydrothermal carbonization and anaerobic digestion.
    Mannarino G; Sarrion A; Diaz E; Gori R; De la Rubia MA; Mohedano AF
    Waste Manag; 2022 Apr; 142():9-18. PubMed ID: 35158176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste.
    Zheng C; Ma X; Yao Z; Chen X
    Bioresour Technol; 2019 Aug; 285():121347. PubMed ID: 31004948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications.
    Zhang Z; Yang J; Qian J; Zhao Y; Wang T; Zhai Y
    Bioresour Technol; 2021 Mar; 324():124686. PubMed ID: 33454447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.
    Lu X; Jordan B; Berge ND
    Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate.
    Celletti S; Bergamo A; Benedetti V; Pecchi M; Patuzzi F; Basso D; Baratieri M; Cesco S; Mimmo T
    J Environ Manage; 2021 Feb; 280():111635. PubMed ID: 33187784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar.
    Sharma HB; Panigrahi S; Dubey BK
    Waste Manag; 2019 May; 91():108-119. PubMed ID: 31203932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.