These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36013817)

  • 1. Residual Stress Enhancement by Laser Shock Treatment in Chromium-Alloyed Steam Turbine Blades.
    Fameso F; Desai D; Kok S; Armfield D; Newby M
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Conditions after LASER Shock Peening of Steel and Aluminum Alloys Using Ultrafast Laser Pulses.
    Schubnell J; Carl ER; Sarmast A; Hinterstein M; Preußner J; Seifert M; Kaufmann C; Rußbüldt P; Schulte J
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Prediction of the Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Ti-6Al-4V Titanium Alloy.
    Ouyang P; Luo X; Dong Z; Zhang S
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser Shock Peening of SiCp/2009Al Composites: Microstructural Evolution, Residual Stress and Fatigue Behavior.
    Sun R; Cao Z; Zhang Y; Zhang H; Yu Y; Che Z; Wu J; Zou S; Guo W
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening.
    Gujba AK; Medraj M
    Materials (Basel); 2014 Dec; 7(12):7925-7974. PubMed ID: 28788284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological and mechanical response of laser shock peening orthopaedic titanium alloy (Ti-6Al-7Nb).
    Shen X; Shukla P; Nayak S; Gopal V; Subramanian P; Sarah Benjamin A; Kalainathan S
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1169-1187. PubMed ID: 35735136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Review on Finite Element Analysis of Laser Shock Peening.
    Wakchaure MB; Misra M; Menezes PL
    Materials (Basel); 2024 Aug; 17(17):. PubMed ID: 39274564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Study on Laser Shock Peening of Pure Al Correlating with Laser Shock Wave.
    Wang M; Wang C; Tao X; Zhou Y
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling Residual Stress Distribution Characteristics of 6061-T6 Aluminum Alloy Induced by Laser Shock Peening.
    Wang Q; Ge Y; Chen J; Suzuki T; Sagisaka Y; Ma N
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Parameters with FEM Model for 20CrMnTi Laser Shocking.
    Sun J; Li J; Chen X; Xu Z; Lin Y; Jiang Q; Chen J; Li Y
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Shock Peening: Fundamentals and Mechanisms of Metallic Material Wear Resistance Improvement.
    Cao X; Wu J; Zhong G; Wu J; Chen X
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening.
    Busi M; Kalentics N; Morgano M; Griffiths S; Tremsin AS; Shinohara T; Logé R; Leinenbach C; Strobl M
    Sci Rep; 2021 Jul; 11(1):14919. PubMed ID: 34290334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation Erosion Prevention Using Laser Shock Peening: Development of a Predictive Evaluation System.
    Li W; Yao H; Ding Z; Zhou Y; Wei P; Yue J; Su W; Zhu W
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Fluid Dynamics Study of Erosion on 900 MW Steam Turbine ND-45 Blades Using 3D Scanning.
    Bzymek G; Bryk M; Kruk-Gotzman S; Ziółkowski PJ
    Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical and Experimental Assessment of the Effect of Residual Stresses on the Fatigue Strength of an Aircraft Blade.
    Bednarz A; Misiolek WZ
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residual Stresses in Surgical Growing Rods.
    Croonenborghs M; Ismail K; Mousny M; Delannay L; Everaerts J; Korsunsky AM; Jacques PJ; Pardoen T
    J Biomech Eng; 2024 Jan; 146(1):. PubMed ID: 37831119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation Mechanism and Control Method of Residual Stress Profile by Laser Shock Peening in Thin Titanium Alloy Component.
    Nie X; Tang Y; Zhao F; Yan L; Wu H; Wei C; He W
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the laser pulse time profile on residual stress characteristics in laser shock peening.
    Zhou L; Zhu C; Yuan H; Mei X; Jiang J; Lu Z
    Opt Express; 2023 May; 31(11):18039-18049. PubMed ID: 37381522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A FEM-Based 2D Model for Simulation and Qualitative Assessment of Shot-Peening Processes.
    Maliaris G; Gakias C; Malikoutsakis M; Savaidis G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34073860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Testing by Torsion of Scalable Wind Turbine Blades.
    Morăraș CI; Goanță V; Istrate B; Munteanu C; Dobrescu GS
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.