These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36013817)

  • 21. Using an artificial neural network to predict the residual stress induced by laser shock processing.
    Wu J; Liu X; Qiao H; Zhao Y; Hu X; Yang Y; Zhao J
    Appl Opt; 2021 Apr; 60(11):3114-3121. PubMed ID: 33983208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation and Experimental Study on Residual Stress Distribution in Titanium Alloy Treated by Laser Shock Peening with Flat-Top and Gaussian Laser Beams.
    Li X; He W; Luo S; Nie X; Tian L; Feng X; Li R
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31022993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating.
    Pan X; Li X; Zhou L; Feng X; Luo S; He W
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy.
    Sealy MP; Guo YB
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):488-96. PubMed ID: 20696413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Confinement and absorption layer free nanosecond laser shock peening of tungsten and its alloy.
    Banerjee S; Spear J
    Opt Lett; 2022 Sep; 47(18):4736-4739. PubMed ID: 36107075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Comprehensive Numerical Approach for Analyzing the Residual Stresses in AISI 301LN Stainless Steel Induced by Shot Peening.
    Zhou F; Jiang W; Du Y; Xiao C
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Maximum Residual Stress Prediction Technique for Shot-Peened Specimen Using Rayleigh Wave Dispersion Data Based on Convolutional Neural Network.
    Choi YW; Lee TG; Yeom YT; Kwon SD; Kim HH; Lee KY; Kim HJ; Song SJ
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical Simulation on Laser Shock Peening of B
    Wang X; Chen B; Zhang F; Liu L; Xu S; Mei H; Lai X; Ren L
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface, Subsurface and Tribological Properties of Ti6Al4V Alloy Shot Peened under Different Parameters.
    Yıldıran Avcu Y; Yetik O; Guney M; Iakovakis E; Sınmazçelik T; Avcu E
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33008035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An analytical model for predicting residual stress in shot peening with strain energy method.
    Poozesh A; Arezoo B
    Sci Rep; 2024 Aug; 14(1):19826. PubMed ID: 39191816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the Microstructure, Residual Stress and Fatigue Performance of Laser Metal Deposited TC17 Alloy Subjected to Laser Shock Peening.
    An Z; He W; Zhou X; Zhou L; Nie X
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Laser Peening on Microstructural Changes in GTA-Welded 304L Stainless Steel.
    Yoo YR; Kim JS; Kim YS
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Laser Quenching-Shock Peening Strengthening on the Microstructure and Mechanical Properties of Cr12MoV Steel.
    Feng A; Zhao J; Lin J; Pan X; Feng H; Wang C; Lu Z
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and implementation of a crossflow turbine for Pico hydropower electricity generation.
    Achebe CH; Okafor OC; Obika EN
    Heliyon; 2020 Jul; 6(7):e04523. PubMed ID: 32760830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Discrete-Finite Element Analysis Model Based on Almen Intensity Test for Evaluation of Real Shot Peening Residual Stress.
    Wang C; Park Y; Kim T
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact on Mechanical Properties and Microstructural Response of Nickel-Based Superalloy GH4169 Subjected to Warm Laser Shock Peening.
    Lu Y; Yang Y; Zhao J; Yang Y; Qiao H; Hu X; Wu J; Sun B
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Centrifugal Shot Peening on the Surface Properties of Laser-Cut C45 Steel Parts.
    Skoczylas A; Zaleski K
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31694173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal-Fluid-Solid Coupling Analysis on the Temperature and Thermal Stress Field of a Nickel-Base Superalloy Turbine Blade.
    Cai L; He Y; Wang S; Li Y; Li F
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of laser shock peening on electrochemical corrosion resistance of IN718 superalloy.
    Ning C; Zhang G; Yang Y; Zhang W
    Appl Opt; 2018 Apr; 57(10):2467-2473. PubMed ID: 29714229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of Fatigue Life of GH3039 Superalloy by Laser Shock Peening.
    Tang Y; Ge M; Zhang Y; Wang T; Zhou W
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.