These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36013821)
1. Effective Extraction of the Al Element from Secondary Aluminum Dross Using a Combined Dry Pressing and Alkaline Roasting Process. Lv H; Xie M; Wu Z; Li L; Yang R; Han J; Liu F; Zhao H Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013821 [TBL] [Abstract][Full Text] [Related]
2. Extraction of alumina from aluminum dross by a non-hazardous alkaline sintering process: Dissolution kinetics of alumina and silica from calcined materials. He L; Shi L; Huang Q; Hayat W; Shang Z; Ma T; Wang M; Yao W; Huang H; Chen R Sci Total Environ; 2021 Jul; 777():146123. PubMed ID: 33684763 [TBL] [Abstract][Full Text] [Related]
3. Particle sorting to improve the removal of fluoride and aluminum nitride from secondary aluminum dross by roasting. Xie H; Guo Z; Xu R; Zhang Y Environ Sci Pollut Res Int; 2023 Apr; 30(19):54536-54546. PubMed ID: 36872407 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of Cryolite (Na Wan B; Li W; Sun W; Liu F; Chen B; Xu S; Chen W; Yi A Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887240 [TBL] [Abstract][Full Text] [Related]
5. A novel approach for lithium recovery from waste lithium-containing aluminum electrolyte by a roasting-leaching process. Wu S; Tao W; Zheng Y; Ge H; He J; Yang Y; Wang Z Waste Manag; 2021 Oct; 134():89-99. PubMed ID: 34418743 [TBL] [Abstract][Full Text] [Related]
6. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: Kinetic study. Mahinroosta M; Allahverdi A J Environ Manage; 2018 Apr; 212():278-291. PubMed ID: 29448182 [TBL] [Abstract][Full Text] [Related]
7. Mechanism for leaching of fluoride ions from carbon dross generated in high-temperature and low-lithium aluminum electrolytic systems. Huo Q; Li R; Chen M; Zhou R; Li B; Chen C; Liu X; Xiao Z; Qin G; Huang J; Long T J Hazard Mater; 2024 May; 469():133838. PubMed ID: 38430589 [TBL] [Abstract][Full Text] [Related]
8. Removal of nitrides and fluorides from secondary aluminum dross by catalytic hydrolysis and its mechanism. Li Z; Li H; Huang X; Wu W; Sun Z; Wu X; Li S Heliyon; 2023 Jan; 9(1):e12893. PubMed ID: 36691546 [TBL] [Abstract][Full Text] [Related]
9. Hydrolysis Behavior and Kinetics of AlN in Aluminum Dross during the Hydrometallurgical Process. Yang HL; Li ZS; Ding YD; Ge QQ; Jiang L Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013638 [TBL] [Abstract][Full Text] [Related]
10. Decomposition behavior and reaction mechanism of Ce Hua Z; Geng A; Tang Z; Zhao Z; Liu H; Yao Y; Yang Y J Environ Manage; 2019 Nov; 249():109383. PubMed ID: 31419671 [TBL] [Abstract][Full Text] [Related]
11. Aluminum recovery as a product with high added value using aluminum hazardous waste. David E; Kopac J J Hazard Mater; 2013 Oct; 261():316-24. PubMed ID: 23959251 [TBL] [Abstract][Full Text] [Related]
12. An active dealkalization of red mud with roasting and water leaching. Zhu X; Li W; Guan X J Hazard Mater; 2015 Apr; 286():85-91. PubMed ID: 25559862 [TBL] [Abstract][Full Text] [Related]
13. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide. Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876 [TBL] [Abstract][Full Text] [Related]
14. Recovery of rare earth elements from waste phosphors via alkali fusion roasting and controlled potential reduction leaching. Xie B; Liu C; Wei B; Wang R; Ren R Waste Manag; 2023 May; 163():43-51. PubMed ID: 37001311 [TBL] [Abstract][Full Text] [Related]
15. Kinetics Study of Al Extraction from Desilicated Coal Fly Ash by NaOH at Atmospheric Pressure. Shoppert A; Loginova I; Valeev D Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947303 [TBL] [Abstract][Full Text] [Related]
16. Recovery of Li from waste Li-containing Al electrolytes with high F and Na contents by using a CaO roasting-water leaching process. Zhao S; Li Y; Guo Q; Wang L; Qi T; Zhang L J Environ Manage; 2024 Sep; 368():122222. PubMed ID: 39153321 [TBL] [Abstract][Full Text] [Related]
17. Recovery of iron and aluminum from iron-rich bauxite residue by an integrated phase reconstruction approach. Liu J; Peng C; Jiang J; Zhang X; He D; Zhou K; Chen W Sci Total Environ; 2023 Dec; 904():166702. PubMed ID: 37652375 [TBL] [Abstract][Full Text] [Related]
18. Harmless disposal and resource utilization for secondary aluminum dross: A review. Shen H; Liu B; Ekberg C; Zhang S Sci Total Environ; 2021 Mar; 760():143968. PubMed ID: 33341624 [TBL] [Abstract][Full Text] [Related]
19. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016 [TBL] [Abstract][Full Text] [Related]
20. A study on pyro-hydrometallurgical process for selective recovery of Pb, Sn and Sb from lead dross. Kim WJ; Seo S; Lee SI; Kim DW; Kim MJ J Hazard Mater; 2021 Sep; 417():126071. PubMed ID: 34229387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]