BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36014072)

  • 1. Functional Analysis of Conserved Hypothetical Proteins from the Antarctic Bacterium,
    Masnoddin M; Ling CMWV; Yusof NA
    Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36014072
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterisation of a cryptic plasmid from an Antarctic bacterium Pedobacter cryoconitis strain BG5.
    Wong CM; Tam HK; Ng WM; Boo SY; González M
    Plasmid; 2013 Mar; 69(2):186-93. PubMed ID: 23266397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete genome sequence of Pedobacter cryoconitis PAMC 27485, a CRISPR-Cas system-containing psychrophile isolated from Antarctica.
    Lee J; Jung YJ; Lee HK; Hong SG; Kim OS
    J Biotechnol; 2016 May; 226():74-5. PubMed ID: 27015980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a semidefined growth medium for Pedobacter cryoconitis BG5 using statistical experimental design.
    Ong M; Ongkudon CM; Wong CM
    Prep Biochem Biotechnol; 2016 Oct; 46(7):657-65. PubMed ID: 26759918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the Functional Role of Hypothetical Proteins From an Antarctic Bacterium
    Ijaq J; Chandra D; Ray MK; Jagannadham MV
    Front Genet; 2022; 13():825269. PubMed ID: 35360867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Inducible HSP70 Genes in an Antarctic Yeast,
    Yusof NA; Charles J; Wan Mahadi WNS; Abdul Murad AM; Mahadi NM
    Microorganisms; 2021 Sep; 9(10):. PubMed ID: 34683390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome characterization of the unsequenced psychrophile Pedobacter cryoconitis using 15N metabolic labeling, tandem mass spectrometry, and a new bioinformatic workflow.
    Pereira-Medrano AG; Margesin R; Wright PC
    Proteomics; 2012 Mar; 12(6):775-89. PubMed ID: 22539428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of cadmium sulfide quantum dots by the lithobiontic Antarctic strain Pedobacter sp. UYP1 and their application as photosensitizer in solar cells.
    Carrasco V; Amarelle V; Lagos-Moraga S; Quezada CP; Espinoza-González R; Faccio R; Fabiano E; Pérez-Donoso JM
    Microb Cell Fact; 2021 Feb; 20(1):41. PubMed ID: 33568151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium.
    Russell RJ; Gerike U; Danson MJ; Hough DW; Taylor GL
    Structure; 1998 Mar; 6(3):351-61. PubMed ID: 9551556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the adaptation strategies employed by Glaciozyma antarctica PI12 on Antarctic sea ice.
    Bharudin I; Abu Bakar MF; Hashim NHF; Mat Isa MN; Alias H; Firdaus-Raih M; Md Illias R; Najimudin N; Mahadi NM; Abu Bakar FD; Abdul Murad AM
    Mar Environ Res; 2018 Jun; 137():169-176. PubMed ID: 29598997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold Adaptation Strategies and the Potential of Psychrophilic Enzymes from the Antarctic Yeast,
    Yusof NA; Hashim NHF; Bharudin I
    J Fungi (Basel); 2021 Jun; 7(7):. PubMed ID: 34209103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Cold-Adapted and Salt-Tolerant Glutathione Reductase from Antarctic Psychrophilic Bacterium
    Wang Y; Wang Q; Hou Y
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of novel cold-tolerance genes from rhizosphere microorganisms of Antarctic plants by functional metagenomics.
    de Francisco Martínez P; Morgante V; González-Pastor JE
    Front Microbiol; 2022; 13():1026463. PubMed ID: 36466687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite.
    Margesin R; Spröer C; Schumann P; Schinner F
    Int J Syst Evol Microbiol; 2003 Sep; 53(Pt 5):1291-1296. PubMed ID: 13130009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response to Cold: A Comparative Transcriptomic Analysis in Eight Cold-Adapted Yeasts.
    Baeza M; Zúñiga S; Peragallo V; Gutierrez F; Barahona S; Alcaino J; Cifuentes V
    Front Microbiol; 2022; 13():828536. PubMed ID: 35283858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic Stress-Induced
    Byun MY; Cui LH; Lee A; Oh HG; Yoo YH; Lee J; Kim WT; Lee H
    Front Plant Sci; 2021; 12():734500. PubMed ID: 34650582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures?
    Beers JM; Jayasundara N
    J Exp Biol; 2015 Jun; 218(Pt 12):1834-45. PubMed ID: 26085661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antarctic intertidal macroalgae under predicted increased temperatures mediated by global climate change: Would they cope?
    Celis-Plá PSM; Moenne F; Rodríguez-Rojas F; Pardo D; Lavergne C; Moenne A; Brown MT; Huovinen P; Gómez I; Navarro N; Sáez CA
    Sci Total Environ; 2020 Oct; 740():140379. PubMed ID: 32927555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invasive grasses of sub-Antarctic Marion Island respond to increasing temperatures at the expense of chilling tolerance.
    Ripley BS; Edwardes A; Rossouw MW; Smith VR; Midgley GF
    Ann Bot; 2020 Apr; 125(5):765-773. PubMed ID: 31583397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation.
    Cvetkovska M; Szyszka-Mroz B; Possmayer M; Pittock P; Lajoie G; Smith DR; Hüner NPA
    New Phytol; 2018 Jul; 219(2):588-604. PubMed ID: 29736931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.