These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36014182)
1. Cross-Domain Active Learning for Electronic Nose Drift Compensation. Sun F; Sun R; Yan J Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014182 [TBL] [Abstract][Full Text] [Related]
2. Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System. Tao Y; Xu J; Liang Z; Xiong L; Yang H Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249024 [TBL] [Abstract][Full Text] [Related]
3. Wasserstein Distance Learns Domain Invariant Feature Representations for Drift Compensation of E-Nose. Tao Y; Li C; Liang Z; Yang H; Xu J Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31454980 [TBL] [Abstract][Full Text] [Related]
4. Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine. Ma Z; Luo G; Qin K; Wang N; Niu W Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29494543 [TBL] [Abstract][Full Text] [Related]
5. Active Learning on Dynamic Clustering for Drift Compensation in an Electronic Nose System. Liu T; Li D; Chen J; Chen Y; Yang T; Cao J Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430909 [TBL] [Abstract][Full Text] [Related]
6. Balanced Distribution Adaptation for Metal Oxide Semiconductor Gas Sensor Array Drift Compensation. Jiang Z; Xu P; Du Y; Yuan F; Song K Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068297 [TBL] [Abstract][Full Text] [Related]
7. Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose. Liu T; Li D; Chen J; Chen Y; Yang T; Cao J Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463202 [TBL] [Abstract][Full Text] [Related]
8. Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods. Ye Z; Liu Y; Li Q Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833693 [TBL] [Abstract][Full Text] [Related]
9. Possibilistic distribution distance metric: a robust domain adaptation learning method. Tao J; Dan Y; Zhou D Front Neurosci; 2023; 17():1247082. PubMed ID: 38027506 [TBL] [Abstract][Full Text] [Related]
10. Electronic Nose Drift Suppression Based on Smooth Conditional Domain Adversarial Networks. Zhu H; Wu Y; Yang G; Song R; Yu J; Zhang J Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400477 [TBL] [Abstract][Full Text] [Related]
11. A Suppression Method of Concentration Background Noise by Transductive Transfer Learning for a Metal Oxide Semiconductor-Based Electronic Nose. Liu H; Li Q; Li Z; Gu Y Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235507 [TBL] [Abstract][Full Text] [Related]
12. Electronic Nose Humidity Compensation System Based on Rapid Detection. Cai M; Xu S; Zhou X; Lu H Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338626 [TBL] [Abstract][Full Text] [Related]
13. Cross-species Data Classification by Domain Adaptation via Discriminative Heterogeneous Maximum Mean Discrepancy. Li L; Cai M IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):312-324. PubMed ID: 31056512 [TBL] [Abstract][Full Text] [Related]
14. A method of gas sensor drift compensation based on intrinsic characteristics of response curve. Sun Y; Zheng Y Sci Rep; 2023 Jul; 13(1):11971. PubMed ID: 37488182 [TBL] [Abstract][Full Text] [Related]
15. Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models. Zhao X; Li P; Xiao K; Meng X; Han L; Yu C Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31492034 [TBL] [Abstract][Full Text] [Related]
16. Domain transfer multiple kernel learning. Duan L; Tsang IW; Xu D IEEE Trans Pattern Anal Mach Intell; 2012 Mar; 34(3):465-79. PubMed ID: 21646679 [TBL] [Abstract][Full Text] [Related]
17. Feature Space Independent Semi-Supervised Domain Adaptation via Kernel Matching. Xiao M; Guo Y IEEE Trans Pattern Anal Mach Intell; 2015 Jan; 37(1):54-66. PubMed ID: 26353208 [TBL] [Abstract][Full Text] [Related]
18. An Ensemble Learning Method for Robot Electronic Nose with Active Perception. Li S; Feng L; Ge Y; Zhu L; Zhao L Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200495 [TBL] [Abstract][Full Text] [Related]
19. Enhancing Electronic Nose Performance Based on a Novel QPSO-KELM Model. Peng C; Yan J; Duan S; Wang L; Jia P; Zhang S Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27077860 [TBL] [Abstract][Full Text] [Related]
20. Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing. Wen T; Yan J; Huang D; Lu K; Deng C; Zeng T; Yu S; He Z Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29382146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]