These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow. Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414 [TBL] [Abstract][Full Text] [Related]
3. Acoustophoretic Control of Microparticle Transport Using Dual-Wavelength Surface Acoustic Wave Devices. Hsu JC; Hsu CH; Huang YW Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30642118 [TBL] [Abstract][Full Text] [Related]
4. Investigating the Performance of the Multi-Lobed Leaf-Shaped Oscillatory Obstacles in Micromixers Using Bulk Acoustic Waves (BAW): Mixing and Chemical Reaction. Kordzadeh-Kermani V; Dartoomi H; Azizi M; Ashrafizadeh SN; Madadelahi M Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421028 [TBL] [Abstract][Full Text] [Related]
5. Acoustohydrodynamic micromixers: Basic mixing principles, programmable mixing prospectives, and biomedical applications. Bai C; Tang X; Li Y; Arai T; Huang Q; Liu X Biomicrofluidics; 2024 Mar; 18(2):021505. PubMed ID: 38659428 [TBL] [Abstract][Full Text] [Related]
6. Mixing high-viscosity fluids via acoustically driven bubbles. Orbay S; Ozcelik A; Lata J; Kaynak M; Wu M; Huang TJ J Micromech Microeng; 2017; 27(1):. PubMed ID: 31588165 [TBL] [Abstract][Full Text] [Related]
7. An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls. Ozcelik A; Ahmed D; Xie Y; Nama N; Qu Z; Nawaz AA; Huang TJ Anal Chem; 2014 May; 86(10):5083-8. PubMed ID: 24754496 [TBL] [Abstract][Full Text] [Related]
8. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner. Khan MS; Sahin MA; Destgeer G; Park J Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893 [TBL] [Abstract][Full Text] [Related]
9. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation. Soliman AM; Eldosoky MA; Taha TE Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506 [TBL] [Abstract][Full Text] [Related]
10. Measurement of the Thermal Effect of Standing Surface Acoustic Waves in Microchannel by Fluoresence Intensity. Li Y; Wei S; Zheng T Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442556 [TBL] [Abstract][Full Text] [Related]
11. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Destgeer G; Sung HJ Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538 [TBL] [Abstract][Full Text] [Related]
12. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method. Xu S; Zong Y; Li W; Zhang S; Wan M Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840 [TBL] [Abstract][Full Text] [Related]
13. Controllable Acoustic Mixing of Fluids in Microchannels for the Fabrication of Therapeutic Nanoparticles. Westerhausen C; Schnitzler LG; Wendel D; Krzysztoń R; Lächelt U; Wagner E; Rädler JO; Wixforth A Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404328 [TBL] [Abstract][Full Text] [Related]
14. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995 [TBL] [Abstract][Full Text] [Related]
15. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents. Yamashita T; Ando K Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434 [TBL] [Abstract][Full Text] [Related]
16. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751 [TBL] [Abstract][Full Text] [Related]
17. Bubble-induced acoustic micromixing. Liu RH; Yang J; Pindera MZ; Athavale M; Grodzinski P Lab Chip; 2002 Aug; 2(3):151-7. PubMed ID: 15100826 [TBL] [Abstract][Full Text] [Related]
18. Study on the bubble transport mechanism in an acoustic standing wave field. Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064 [TBL] [Abstract][Full Text] [Related]
19. Characterizing Acoustic Behavior of Silicon Microchannels Separated by a Porous Wall. Hashemiesfahan M; Christiaens JW; Maisto A; Gelin P; Gardeniers H; De Malsche W Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064377 [TBL] [Abstract][Full Text] [Related]
20. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]