BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36014259)

  • 21. Acoustically Driven Micromixing: Effect of Transducer Geometry.
    Lim E; Lee L; Yeo LY; Hung YM; Tan MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1387-1394. PubMed ID: 31180889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixing enhancement for high viscous fluids in a microfluidic chamber.
    Wang S; Huang X; Yang C
    Lab Chip; 2011 Jun; 11(12):2081-7. PubMed ID: 21547315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves.
    Chen Y; Ni C; Xie G; Liu Q
    Ultrason Sonochem; 2020 Jun; 64():105003. PubMed ID: 32062535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Versatile Microfluidic Mixing Platform for High- and Low-Viscosity Liquids via Acoustic and Chemical Microbubbles.
    Guan Y; Sun B
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustofluidic control of bubble size in microfluidic flow-focusing configuration.
    Chong ZZ; Tor SB; Loh NH; Wong TN; Gañán-Calvo AM; Tan SH; Nguyen NT
    Lab Chip; 2015 Feb; 15(4):996-9. PubMed ID: 25510843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control.
    Hashemiesfahan M; Gelin P; Maisto A; Gardeniers H; De Malsche W
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues.
    Qin D; Zou Q; Lei S; Wang W; Li Z
    Ultrason Sonochem; 2021 Oct; 78():105712. PubMed ID: 34391164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation.
    Yuan M; Li C; Ge J; Xu Q; Li Z
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear dynamics of a cavitation bubble pair near a rigid boundary in a standing ultrasonic wave field.
    Huang X; Hu H; Li S; Zhang AM
    Ultrason Sonochem; 2020 Jun; 64():104969. PubMed ID: 31999989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micromixing within microfluidic devices: Fundamentals, design, and fabrication.
    Cai S; Jin Y; Lin Y; He Y; Zhang P; Ge Z; Yang W
    Biomicrofluidics; 2023 Dec; 17(6):061503. PubMed ID: 38098692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bubbles in an acoustic field: an overview.
    Ashokkumar M; Lee J; Kentish S; Grieser F
    Ultrason Sonochem; 2007 Apr; 14(4):470-5. PubMed ID: 17234444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves.
    Meng L; Cai F; Zhang Z; Niu L; Jin Q; Yan F; Wu J; Wang Z; Zheng H
    Biomicrofluidics; 2011 Dec; 5(4):44104-4410410. PubMed ID: 22662056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and optimization of acoustic bubble structures at high frequencies.
    Lee J; Ashokkumar M; Yasui K; Tuziuti T; Kozuka T; Towata A; Iida Y
    Ultrason Sonochem; 2011 Jan; 18(1):92-8. PubMed ID: 20452265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
    Xi X; Cegla F; Mettin R; Holsteyns F; Lippert A
    J Acoust Soc Am; 2014 Apr; 135(4):1731-41. PubMed ID: 25234973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic mixing in a dome-shaped chamber-based SAW (DC-SAW) device.
    Lim H; Back SM; Choi H; Nam J
    Lab Chip; 2020 Jan; 20(1):120-125. PubMed ID: 31723954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic Mixing: A Physics-Oriented Review.
    Saravanakumar SM; Cicek PV
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Standing Surface Acoustic Wave-Assisted Fabrication of Region-Selective Microstructures via User-Defined Waveguides.
    Wang Y; Han C; Mei D
    Langmuir; 2019 Aug; 35(34):11225-11231. PubMed ID: 31390213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional multihelical microfluidic mixers for rapid mixing of liquids.
    Verma MK; Ganneboyina SR; R VR; Ghatak A
    Langmuir; 2008 Mar; 24(5):2248-51. PubMed ID: 18197716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.