These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36014259)

  • 21. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustically Driven Micromixing: Effect of Transducer Geometry.
    Lim E; Lee L; Yeo LY; Hung YM; Tan MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1387-1394. PubMed ID: 31180889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation, control, and application of stable bubbles in a hypersonic acoustic system.
    Shen X; Ke X; Li T; Sun C; Duan X
    Lab Chip; 2024 Sep; 24(18):4450-4460. PubMed ID: 39206785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mixing enhancement for high viscous fluids in a microfluidic chamber.
    Wang S; Huang X; Yang C
    Lab Chip; 2011 Jun; 11(12):2081-7. PubMed ID: 21547315
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves.
    Chen Y; Ni C; Xie G; Liu Q
    Ultrason Sonochem; 2020 Jun; 64():105003. PubMed ID: 32062535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Versatile Microfluidic Mixing Platform for High- and Low-Viscosity Liquids via Acoustic and Chemical Microbubbles.
    Guan Y; Sun B
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustofluidic control of bubble size in microfluidic flow-focusing configuration.
    Chong ZZ; Tor SB; Loh NH; Wong TN; Gañán-Calvo AM; Tan SH; Nguyen NT
    Lab Chip; 2015 Feb; 15(4):996-9. PubMed ID: 25510843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Performance of an Acoustofluidic Device by Integrating Temperature Control.
    Hashemiesfahan M; Gelin P; Maisto A; Gardeniers H; De Malsche W
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues.
    Qin D; Zou Q; Lei S; Wang W; Li Z
    Ultrason Sonochem; 2021 Oct; 78():105712. PubMed ID: 34391164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the Motion Characteristics of Solid Particles in Fine Flow Channels by Ultrasonic Cavitation.
    Yuan M; Li C; Ge J; Xu Q; Li Z
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear dynamics of a cavitation bubble pair near a rigid boundary in a standing ultrasonic wave field.
    Huang X; Hu H; Li S; Zhang AM
    Ultrason Sonochem; 2020 Jun; 64():104969. PubMed ID: 31999989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micromixing within microfluidic devices: Fundamentals, design, and fabrication.
    Cai S; Jin Y; Lin Y; He Y; Zhang P; Ge Z; Yang W
    Biomicrofluidics; 2023 Dec; 17(6):061503. PubMed ID: 38098692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bubbles in an acoustic field: an overview.
    Ashokkumar M; Lee J; Kentish S; Grieser F
    Ultrason Sonochem; 2007 Apr; 14(4):470-5. PubMed ID: 17234444
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves.
    Meng L; Cai F; Zhang Z; Niu L; Jin Q; Yan F; Wu J; Wang Z; Zheng H
    Biomicrofluidics; 2011 Dec; 5(4):44104-4410410. PubMed ID: 22662056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and optimization of acoustic bubble structures at high frequencies.
    Lee J; Ashokkumar M; Yasui K; Tuziuti T; Kozuka T; Towata A; Iida Y
    Ultrason Sonochem; 2011 Jan; 18(1):92-8. PubMed ID: 20452265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
    Xi X; Cegla F; Mettin R; Holsteyns F; Lippert A
    J Acoust Soc Am; 2014 Apr; 135(4):1731-41. PubMed ID: 25234973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic mixing in a dome-shaped chamber-based SAW (DC-SAW) device.
    Lim H; Back SM; Choi H; Nam J
    Lab Chip; 2020 Jan; 20(1):120-125. PubMed ID: 31723954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic Mixing: A Physics-Oriented Review.
    Saravanakumar SM; Cicek PV
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.