These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36014274)

  • 1. Optimization of Microchannels and Application of Basic Activation Functions of Deep Neural Network for Accuracy Analysis of Microfluidic Parameter Data.
    Ahmed F; Shimizu M; Wang J; Sakai K; Kiwa T
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of Alzheimer's Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling.
    Wang SH; Phillips P; Sui Y; Liu B; Yang M; Cheng H
    J Med Syst; 2018 Mar; 42(5):85. PubMed ID: 29577169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Layers and Neurons in Deep Learning With the Rectified Linear Unit.
    Takekawa A; Kajiura M; Fukuda H
    Cureus; 2021 Oct; 13(10):e18866. PubMed ID: 34820210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Antinoise Ability of DNNs via a Bio-Inspired Noise Adaptive Activation Function Rand Softplus.
    Chen Y; Mai Y; Xiao J; Zhang L
    Neural Comput; 2019 Jun; 31(6):1215-1233. PubMed ID: 30979351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep ReLU neural networks in high-dimensional approximation.
    Dũng D; Nguyen VK
    Neural Netw; 2021 Oct; 142():619-635. PubMed ID: 34392126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptively Customizing Activation Functions for Various Layers.
    Hu H; Liu A; Guan Q; Qian H; Li X; Chen S; Zhou Q
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):6096-6107. PubMed ID: 35007200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems.
    Thaweskulchai T; Schulte A
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal approximation of piecewise smooth functions using deep ReLU neural networks.
    Petersen P; Voigtlaender F
    Neural Netw; 2018 Dec; 108():296-330. PubMed ID: 30245431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recursion Newton-Like Algorithm for l
    Zhang H; Yuan Z; Xiu N
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5882-5896. PubMed ID: 34898441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric Deformable Exponential Linear Units for deep neural networks.
    Cheng Q; Li H; Wu Q; Ma L; Ngan KN
    Neural Netw; 2020 May; 125():281-289. PubMed ID: 32151915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Singular Values for ReLU Layers.
    Dittmer S; King EJ; Maass P
    IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3594-3605. PubMed ID: 31714239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal transistors as ReLU activation functions in physical neural network classifiers.
    Surekcigil Pesch I; Bestelink E; de Sagazan O; Mehonic A; Sporea RA
    Sci Rep; 2022 Jan; 12(1):670. PubMed ID: 35027631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering Parametric Activation Functions.
    Bingham G; Miikkulainen R
    Neural Netw; 2022 Apr; 148():48-65. PubMed ID: 35066417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designable microfluidic ladder networks from backstepping microflow analysis for mass production of monodisperse microdroplets.
    Deng CF; Su YY; Yang SH; Jiang QR; Xie R; Ju XJ; Liu Z; Pan DW; Wang W; Chu LY
    Lab Chip; 2022 Dec; 22(24):4962-4973. PubMed ID: 36420612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flatness Prediction of Cold Rolled Strip Based on Deep Neural Network with Improved Activation Function.
    Liu J; Song S; Wang J; Balaiti M; Song N; Li S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of machine learning for simulations of red blood cells in microfluidic devices.
    Bachratý H; Bachratá K; Chovanec M; Jančigová I; Smiešková M; Kovalčíková K
    BMC Bioinformatics; 2020 Mar; 21(Suppl 2):90. PubMed ID: 32164547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System-level simulation of liquid filling in microfluidic chips.
    Song H; Wang Y; Pant K
    Biomicrofluidics; 2011 Jun; 5(2):24107. PubMed ID: 21673845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wilson disease tissue classification and characterization using seven artificial intelligence models embedded with 3D optimization paradigm on a weak training brain magnetic resonance imaging datasets: a supercomputer application.
    Agarwal M; Saba L; Gupta SK; Johri AM; Khanna NN; Mavrogeni S; Laird JR; Pareek G; Miner M; Sfikakis PP; Protogerou A; Sharma AM; Viswanathan V; Kitas GD; Nicolaides A; Suri JS
    Med Biol Eng Comput; 2021 Mar; 59(3):511-533. PubMed ID: 33547549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.