These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36014279)

  • 1. Multilayer Soft Photolithography Fabrication of Microfluidic Devices Using a Custom-Built Wafer-Scale PDMS Slab Aligner and Cost-Efficient Equipment.
    Nguyen T; Sarkar T; Tran T; Moinuddin SM; Saha D; Ahsan F
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Customizable and Low-Cost Ultraviolet Exposure System for Photolithography.
    Reynolds DE; Lewallen O; Galanis G; Ko J
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A portable and affordable aligner for the assembly of microfluidic devices.
    Guglielmotti V; Saffioti NA; Tohmé AL; Gambarotta M; Corthey G; Pallarola D
    HardwareX; 2022 Oct; 12():e00348. PubMed ID: 36105917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging.
    O'Laughlin R; Forrest E; Hasty J; Hao N
    Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homebrew Photolithography for the Rapid and Low-Cost, "Do It Yourself" Prototyping of Microfluidic Devices.
    Todd D; Krasnogor N
    ACS Omega; 2023 Sep; 8(38):35393-35409. PubMed ID: 37780017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compact low-cost low-maintenance open architecture mask aligner for fabrication of multilayer microfluidics devices.
    Pham QL; Tong NAN; Mathew A; Basuray S; Voronov RS
    Biomicrofluidics; 2018 Jul; 12(4):044119. PubMed ID: 30174777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography.
    Kasi DG; de Graaf MNS; Motreuil-Ragot PA; Frimat JMS; Ferrari MD; Sarro PM; Mastrangeli M; van den Maagdenberg AMJM; Mummery CL; Orlova VV
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact Photolithography at Sub-Micrometer Scale Using a Soft Photomask.
    Wu CY; Hsieh H; Lee YC
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters.
    Li CW; Cheung CN; Yang J; Tzang CH; Yang M
    Analyst; 2003 Sep; 128(9):1137-42. PubMed ID: 14529020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components.
    Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M
    Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reproducible method for
    Cottet J; Vaillier C; Buret F; Frénéa-Robin M; Renaud P
    Biomicrofluidics; 2017 Nov; 11(6):064111. PubMed ID: 29308100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics.
    Kook G; Jeong S; Kim SH; Kim MK; Lee S; Cho IJ; Choi N; Lee HJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):115-124. PubMed ID: 30480426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low cost integration of 3D-electrode structures into microfluidic devices by replica molding.
    Mustin B; Stoeber B
    Lab Chip; 2012 Nov; 12(22):4702-8. PubMed ID: 23007263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.