These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36014294)

  • 1. Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells.
    Barańska A; Sicińska P; Michałowicz J
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of Apoptotic Mechanism of Action of Tetrabromobisphenol A and Tetrabromobisphenol S in Human Peripheral Blood Mononuclear Cells: A Comparative Study.
    Barańska A; Bukowska B; Michałowicz J
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotoxic Mechanism of Action of TBBPA, TBBPS and Selected Bromophenols in Human Peripheral Blood Mononuclear Cells.
    Barańska A; Woźniak A; Mokra K; Michałowicz J
    Front Immunol; 2022; 13():869741. PubMed ID: 35493487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrabromobisphenol A, terabromobisphenol S and other bromophenolic flame retardants cause cytotoxic effects and induce oxidative stress in human peripheral blood mononuclear cells (in vitro study).
    Włuka A; Woźniak A; Woźniak E; Michałowicz J
    Chemosphere; 2020 Dec; 261():127705. PubMed ID: 32731020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants.
    Jarosiewicz M; Michałowicz J; Bukowska B
    Chemosphere; 2019 Jan; 215():404-412. PubMed ID: 30336317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Effect of Selected Brominated Flame Retardants on Human Serum Albumin and Human Erythrocyte Membrane Proteins.
    Jarosiewicz M; Miłowska K; Krokosz A; Bukowska B
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32486253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the effect of brominated flame retardants on hemoglobin oxidation and hemolysis in human erythrocytes.
    Jarosiewicz M; Duchnowicz P; Włuka A; Bukowska B
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):264-271. PubMed ID: 28893619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants.
    Jarosiewicz M; Krokosz A; Marczak A; Bukowska B
    Chemosphere; 2019 Jul; 227():93-99. PubMed ID: 30986606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bisphenol A and its analogs exhibit different apoptotic potential in peripheral blood mononuclear cells (in vitro study).
    Mokra K; Kocia M; Michałowicz J
    Food Chem Toxicol; 2015 Oct; 84():79-88. PubMed ID: 26271707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on environmental occurrence, toxic effects and transformation of man-made bromophenols.
    Michałowicz J; Włuka A; Bukowska B
    Sci Total Environ; 2022 Mar; 811():152289. PubMed ID: 34902422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of non-functionalized polystyrene nanoparticles of different diameters on the induction of apoptosis and mTOR level in human peripheral blood mononuclear cells.
    Malinowska K; Sicińska P; Michałowicz J; Bukowska B
    Chemosphere; 2023 Sep; 335():139137. PubMed ID: 37285979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a solid-phase microextraction method for the analysis of phenolic flame retardants in water samples.
    Polo M; Llompart M; Garcia-Jares C; Gomez-Noya G; Bollain MH; Cela R
    J Chromatogr A; 2006 Aug; 1124(1-2):11-21. PubMed ID: 16600262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP).
    Koch C; Sures B
    Environ Pollut; 2018 Feb; 233():706-713. PubMed ID: 29126092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration of phenolic brominated flame retardants from contaminated food contact articles into food simulants and foods.
    Paseiro-Cerrato R; De Jager L; Begley TH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Mar; 38(3):464-475. PubMed ID: 33493090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of typical BFRs 2,4,6-tribromophenol by an indigenous strain Bacillus sp. GZT isolated from e-waste dismantling area through functional heterologous expression.
    Liang Z; Li G; Mai B; An T
    Sci Total Environ; 2019 Dec; 697():134159. PubMed ID: 31491624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling of plastic waste: Screening for brominated flame retardants (BFRs).
    Pivnenko K; Granby K; Eriksson E; Astrup TF
    Waste Manag; 2017 Nov; 69():101-109. PubMed ID: 28869101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial-related effects of pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells.
    Bowen C; Childers G; Perry C; Martin N; McPherson CA; Lauten T; Santos J; Harry GJ
    Chemosphere; 2020 Sep; 255():126919. PubMed ID: 32402876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial detoxification of 2,4,6-tribromophenol via a novel process with consecutive oxidative and hydrolytic debromination: Biochemical, genetic and evolutionary characterization.
    Min J; Fang S; Peng J; Lv X; Xu L; Li Y; Hu X
    Environ Res; 2022 Apr; 205():112494. PubMed ID: 34890595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brominated flame retardants in placental tissues: associations with infant sex and thyroid hormone endpoints.
    Leonetti C; Butt CM; Hoffman K; Hammel SC; Miranda ML; Stapleton HM
    Environ Health; 2016 Nov; 15(1):113. PubMed ID: 27884139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China.
    Xiong J; Li G; An T; Zhang C; Wei C
    Environ Pollut; 2016 Dec; 219():596-603. PubMed ID: 27350038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.