These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36014528)

  • 1. Secondary Electrons in Gold Nanoparticle Clusters and Their Role in Therapeutic Ratio: The Outcome of a Monte Carlo Simulation Study.
    Akhdar H; Alanazi R; Alanazi N; Alodhayb A
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.
    Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S
    Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale gold nanoparticle (GNP)-laden tumor cell model and its use for estimation of intracellular dose from GNP-induced secondary electrons.
    Jayarathna S; Kaphle A; Krishnan S; Cho SH
    Med Phys; 2024 Sep; 51(9):6276-6291. PubMed ID: 38935922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations.
    Jones BL; Krishnan S; Cho SH
    Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backscattered electron emission after proton impact on gold nanoparticles with and without polymer shell coating.
    Hespeels F; Heuskin AC; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Lucas S
    Phys Med Biol; 2019 Jun; 64(12):125007. PubMed ID: 30986778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticle enhanced proton therapy: A Monte Carlo simulation of the effects of proton energy, nanoparticle size, coating material, and coating thickness on dose and radiolysis yield.
    Peukert D; Kempson I; Douglass M; Bezak E
    Med Phys; 2020 Feb; 47(2):651-661. PubMed ID: 31725910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
    Chow JC; Leung MK; Jaffray DA
    Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron track structure simulations in a gold nanoparticle using Geant4-DNA.
    Sakata D; Kyriakou I; Tran HN; Bordage MC; Rosenfeld A; Ivanchenko V; Incerti S; Emfietzoglou D; Guatelli S
    Phys Med; 2019 Jul; 63():98-104. PubMed ID: 31221415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallic nanoparticles irradiated by low-energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery?
    Heuskin AC; Gallez B; Feron O; Martinive P; Michiels C; Lucas S
    Med Phys; 2017 Aug; 44(8):4299-4312. PubMed ID: 28543610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of a transverse magnetic field on the dose enhancement of nanoparticles in a proton beam: a Monte Carlo simulation.
    Parishan M; Faghihi R; Kadoya N; Jingu K
    Phys Med Biol; 2020 Apr; 65(8):085002. PubMed ID: 32101796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation.
    Lin Y; McMahon SJ; Scarpelli M; Paganetti H; Schuemann J
    Phys Med Biol; 2014 Dec; 59(24):7675-89. PubMed ID: 25415297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles.
    Hespeels F; Lucas S; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Tran HN; Heuskin AC
    Phys Med Biol; 2019 Mar; 64(6):065014. PubMed ID: 30731439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.
    Douglass M; Bezak E; Penfold S
    Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation.
    Liu R; Zhao T; Zhao X; Reynoso FJ
    Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative investigation of physical factors contributing to gold nanoparticle-mediated proton dose enhancement.
    Cho J; Gonzalez-Lepera C; Manohar N; Kerr M; Krishnan S; Cho SH
    Phys Med Biol; 2016 Mar; 61(6):2562-81. PubMed ID: 26952844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production.
    Leung MK; Chow JC; Chithrani BD; Lee MJ; Oms B; Jaffray DA
    Med Phys; 2011 Feb; 38(2):624-31. PubMed ID: 21452700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams.
    Rudek B; McNamara A; Ramos-Méndez J; Byrne H; Kuncic Z; Schuemann J
    Phys Med Biol; 2019 Aug; 64(17):175005. PubMed ID: 31295730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation.
    Poignant F; Monini C; Testa É; Beuve M
    Med Phys; 2021 Apr; 48(4):1874-1883. PubMed ID: 33150620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale dosimetry for a radioisotope-labeled metal nanoparticle using MCNP6.2 and Geant4.
    Kim T; Millares RH; Kim T; Eom M; Kim J; Ye SJ
    Med Phys; 2024 Sep; ():. PubMed ID: 39225623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.