These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36014532)

  • 21. Biological intercomparisons of neutron beams used for radiotherapy generated by p(+)-->Be in hospital-based cyclotrons.
    Hall EJ; Astor M; Brenner DJ
    Br J Radiol; 1992 Jan; 65(769):66-71. PubMed ID: 1336696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiation Protection Studies for Medical Particle Accelerators using Fluka Monte Carlo Code.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Radiat Prot Dosimetry; 2017 Apr; 173(1-3):185-191. PubMed ID: 27886990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility Study to Byproduce Medical Radioisotopes in a Fusion Reactor.
    Li J; Zheng S
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diagnostic assessment to estimate and minimize neutron dose rates received by occupationally exposed individuals at cyclotron facilities.
    Reina LC; Silva AX; Suita JC; Souza MI; Facure A; Silva JC; Furlanetto JA; Rebello W
    Appl Radiat Isot; 2010 Mar; 68(3):489-95. PubMed ID: 20060307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A versatile, new accelerator design for boron neutron capture therapy: accelerator design and neutron energy considerations.
    Shefer RE; Klinkowstein RE; Yanch JC; Brownell GL
    Basic Life Sci; 1990; 54():259-70. PubMed ID: 2176456
    [No Abstract]   [Full Text] [Related]  

  • 27. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TESLA Accelerator Installation at Vinca. Production of radioisotopes for nuclear-medical applications.
    Vucina J; Memedović T; Vuksanović L
    Med Pregl; 1993; 46 Suppl 1():103-4. PubMed ID: 8569591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
    Taheri A; Pazirandeh A
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):857-862. PubMed ID: 27573907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Medical Research Council linear accelerator and cyclotron.
    WOOD CA; NEWBERY GR
    Nature; 1954 Feb; 173(4397):233-5. PubMed ID: 13144735
    [No Abstract]   [Full Text] [Related]  

  • 31. A design study of an accelerator-based epithermal neutron source for boron neutron capture therapy.
    Wang CK; Blue TE; Gahbauer RA
    Strahlenther Onkol; 1989; 165(2-3):75-8. PubMed ID: 2494748
    [No Abstract]   [Full Text] [Related]  

  • 32. The state of positron emitting radionuclide production in 1997.
    McCarthy TJ; Welch MJ
    Semin Nucl Med; 1998 Jul; 28(3):235-46. PubMed ID: 9704365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutron source strength measurements for Varian, Siemens, Elekta, and General Electric linear accelerators.
    Followill DS; Stovall MS; Kry SF; Ibbott GS
    J Appl Clin Med Phys; 2003; 4(3):189-94. PubMed ID: 12841788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.
    Hsu YC; Lai BL; Sheu RJ
    Radiat Prot Dosimetry; 2016 Jan; 168(1):124-33. PubMed ID: 25628454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Shielding design and detection of neutrons from medical and industrial electron accelerators--simple method of design calculation for neutron shielding].
    Nakamura T; Uwamino Y
    Radioisotopes; 1986 Feb; 35(2):51-6. PubMed ID: 3704202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation processes in a medical linear accelerator and spatial distribution of activation products.
    Fischer HW; Tabot BE; Poppe B
    Phys Med Biol; 2006 Dec; 51(24):N461-6. PubMed ID: 17148816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of carrier-free 7Be by ion-exchange following charged particle and photonuclear reactions.
    Ohtsuki T; Fujikawa SI; Yuki H
    Appl Radiat Isot; 2003 Oct; 59(4):221-3. PubMed ID: 14522228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of thermal neutron irradiation field using a cyclotron-based neutron source for alpha autoradiography.
    Tanaka H; Sakurai Y; Suzuki M; Masunaga S; Mitsumoto T; Kinashi Y; Kondo N; Narabayashi M; Nakagawa Y; Watanabe T; Fujimoto N; Maruhashi A; Ono K
    Appl Radiat Isot; 2014 Jun; 88():153-6. PubMed ID: 24560850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.