BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36014616)

  • 1. Visible and Near-Infrared Broadband Absorber Based on Ti
    Jia Y; Wu T; Wang G; Jiang J; Miao F; Gao Y
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of ultra-broadband absorption enhancement in plasmonic absorber by interaction resonance of multi-plasmon modes and Fabry-Perot mode.
    Zeng L; Zhang X; Ye H; Dong H; Zhang H
    Opt Express; 2021 Aug; 29(18):29228-29241. PubMed ID: 34615037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Infrared Ultra-Broadband Absorber Based on MIM Structure.
    Li M; Wang G; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared.
    Liu J; Ma WZ; Chen W; Yu GX; Chen YS; Deng XC; Yang CF
    Opt Express; 2020 Aug; 28(16):23748-23760. PubMed ID: 32752367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-Insensitive Broadband THz Absorber Based on Circular Graphene Patches.
    Qian J; Zhou J; Zhu Z; Ge Z; Wu S; Liu X; Yi J
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance.
    Sun L; Liu D; Su J; Li X; Zhou S; Wang K; Zhang Q
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of metamaterial perfect absorbers in the long-wave infrared region.
    Wang Y; Li X; Wu S; Hu C; Liu Y
    Phys Chem Chem Phys; 2023 Dec; 26(1):551-557. PubMed ID: 38086645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional band-switchable nano-film absorber from narrowband to broadband.
    Wang F; Gao H; Peng W; Li R; Chu S; Yu L; Wang Q
    Opt Express; 2021 Feb; 29(4):5110-5120. PubMed ID: 33726052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Plasmonic Metamaterial Optical Absorber for the Visible to Near-Infrared Region.
    Musa A; Alam T; Islam MT; Hakim ML; Rmili H; Alshammari AS; Islam MS; Soliman MS
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36838994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband Near-Infrared Absorber Based on All Metallic Metasurface.
    Zhang K; Deng R; Song L; Zhang T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array.
    Yi Z; Li J; Lin J; Qin F; Chen X; Yao W; Liu Z; Cheng S; Wu P; Li H
    Nanoscale; 2020 Nov; 12(45):23077-23083. PubMed ID: 33179661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband long-wave infrared high-absorption of active materials through hybrid plasmonic resonance modes.
    Liu X; Zhang Z; Han C; Wu J; Zhang X; Zhou H; Xie Q; Wang J
    Discov Nano; 2023 Mar; 18(1):35. PubMed ID: 36884144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.