BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36014618)

  • 1. A Dual-Band Guided Laser Absorber Based on Plasmonic Resonance and Fabry-Pérot Resonance.
    Liao X; Zeng J; Zhang Y; He X; Yang J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance.
    Zheng HY; Jin XR; Park JW; Lu YH; Rhee JY; Jang WH; Cheong H; Lee YP
    Opt Express; 2012 Oct; 20(21):24002-9. PubMed ID: 23188367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.
    Zhang C; Huang C; Pu M; Song J; Zhao Z; Wu X; Luo X
    Sci Rep; 2017 Jul; 7(1):5652. PubMed ID: 28720892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of metamaterial perfect absorbers in the long-wave infrared region.
    Wang Y; Li X; Wu S; Hu C; Liu Y
    Phys Chem Chem Phys; 2023 Dec; 26(1):551-557. PubMed ID: 38086645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".
    Liu X; Lan C; Li B; Zhao Q; Zhou J
    Sci Rep; 2016 Jul; 6():28906. PubMed ID: 27406699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric dielectric grating on metallic film enabled dual- and narrow-band absorbers.
    He X; Jie J; Yang J; Han Y; Zhang S
    Opt Express; 2020 Feb; 28(4):4594-4602. PubMed ID: 32121693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Narrow-Band Multi-Resonant Metamaterial in Near-IR.
    Ali F; Aksu S
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-band tunable perfect metamaterial absorber based on graphene.
    Wang F; Huang S; Li L; Chen W; Xie Z
    Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide-Oblique-Incident-Angle Stable Polarization-Insensitive Ultra-Wideband Metamaterial Perfect Absorber for Visible Optical Wavelength Applications.
    Hakim ML; Alam T; Islam MS; Salaheldeen M M; Almalki SHA; Baharuddin MH; Alsaif H; Islam MT
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared.
    Liu J; Ma WZ; Chen W; Yu GX; Chen YS; Deng XC; Yang CF
    Opt Express; 2020 Aug; 28(16):23748-23760. PubMed ID: 32752367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective dual-band metamaterial perfect absorber for infrared stealth technology.
    Kim J; Han K; Hahn JW
    Sci Rep; 2017 Jul; 7(1):6740. PubMed ID: 28751736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber.
    Luo X; Zhai X; Wang L; Lin Q
    Opt Express; 2018 Apr; 26(9):11658-11666. PubMed ID: 29716084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review.
    Ogawa S; Kimata M
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29558454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic metamaterial absorbers with strong coupling effects for small pixel infrared detectors.
    Li J; Li J; Zhou H; Zhang G; Liu H; Wang S; Yi F
    Opt Express; 2021 Jul; 29(15):22907-22921. PubMed ID: 34614568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime.
    Shu S; Li Z; Li YY
    Opt Express; 2013 Oct; 21(21):25307-15. PubMed ID: 24150371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.