These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36014665)

  • 1. Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters.
    Guimbao J; Sanchis L; Weituschat LM; Llorens JM; Postigo PA
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Optimization of a Nanophotonic Cavity by Machine Learning for Near-Unity Photon Indistinguishability at Room Temperature.
    Guimbao J; Sanchis L; Weituschat L; Manuel Llorens J; Song M; Cardenas J; Aitor Postigo P
    ACS Photonics; 2022 Jun; 9(6):1926-1935. PubMed ID: 35726240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the indistinguishability of single photon emitters coupled to photonic waveguides.
    Guimbao J; Weituschat LM; Llorens Montolio JM; Postigo PA
    Opt Express; 2021 Jul; 29(14):21160-21173. PubMed ID: 34265908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source.
    Kreinberg S; Grbešić T; Strauß M; Carmele A; Emmerling M; Schneider C; Höfling S; Porte X; Reitzenstein S
    Light Sci Appl; 2018; 7():41. PubMed ID: 30839591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purcell Enhancement of a Cavity-Coupled Emitter in Hexagonal Boron Nitride.
    Fröch JE; Li C; Chen Y; Toth M; Kianinia M; Kim S; Aharonovich I
    Small; 2022 Jan; 18(2):e2104805. PubMed ID: 34837313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascaded Cavities Boost the Indistinguishability of Imperfect Quantum Emitters.
    Choi H; Zhu D; Yoon Y; Englund D
    Phys Rev Lett; 2019 May; 122(18):183602. PubMed ID: 31144870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics.
    Grange T; Somaschi N; Antón C; De Santis L; Coppola G; Giesz V; Lemaître A; Sagnes I; Auffèves A; Senellart P
    Phys Rev Lett; 2017 Jun; 118(25):253602. PubMed ID: 28696749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable quantum dots in monolithic Fabry-Perot microcavities for high-performance single-photon sources.
    Yang J; Chen Y; Rao Z; Zheng Z; Song C; Chen Y; Xiong K; Chen P; Zhang C; Wu W; Yu Y; Yu S
    Light Sci Appl; 2024 Jan; 13(1):33. PubMed ID: 38291018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the coupling between quantum dot and microdisk with photonic crystal nanobeam cavity.
    Zhao Y; Chen LH; Wang XH
    Opt Express; 2019 Jul; 27(15):20211-20220. PubMed ID: 31510119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters.
    Grange T; Hornecker G; Hunger D; Poizat JP; Gérard JM; Senellart P; Auffèves A
    Phys Rev Lett; 2015 May; 114(19):193601. PubMed ID: 26024171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices.
    Gurioli M; Wang Z; Rastelli A; Kuroda T; Sanguinetti S
    Nat Mater; 2019 Aug; 18(8):799-810. PubMed ID: 31086322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Quantum Dot Selection and Tailor-Made Photonic Device Integration using a Nanoscale-Focus Pinspot.
    Choi M; Lee M; Park SL; Kim BS; Jun S; Park SI; Song JD; Ko YH; Cho YH
    Adv Mater; 2023 Jun; 35(26):e2210667. PubMed ID: 36946467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable quantum photonic circuits based on quantum dots.
    McCaw A; Ewaniuk J; Shastri BJ; Rotenberg N
    Nanophotonics; 2024 Jul; 13(16):2951-2959. PubMed ID: 39006136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation.
    Ates S; Agha I; Gulinatti A; Rech I; Badolato A; Srinivasan K
    Sci Rep; 2013; 3():1397. PubMed ID: 23466520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices.
    Davanco M; Liu J; Sapienza L; Zhang CZ; De Miranda Cardoso JV; Verma V; Mirin R; Nam SW; Liu L; Srinivasan K
    Nat Commun; 2017 Oct; 8(1):889. PubMed ID: 29026109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Focus Pinspot for High-Purity Quantum Emitters via Focused-Ion-Beam-Induced Luminescence Quenching.
    Choi M; Jun S; Woo KY; Song HG; Yeo HS; Choi S; Park D; Park CH; Cho YH
    ACS Nano; 2021 Jul; 15(7):11317-11325. PubMed ID: 34165277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bright Quantum Dot Single-Photon Emitters at Telecom Bands Heterogeneously Integrated on Si.
    Holewa P; Sakanas A; Gür UM; Mrowiński P; Huck A; Wang BY; Musiał A; Yvind K; Gregersen N; Syperek M; Semenova E
    ACS Photonics; 2022 Jul; 9(7):2273-2279. PubMed ID: 35880068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano antenna-assisted quantum dots emission into high-index planar waveguide.
    Yu X; Weeber JC; Markey L; Arocas J; Bouhelier A; Leray A; Colas des Francs G
    Nanotechnology; 2024 Apr; 35(26):. PubMed ID: 38522099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. III-V quantum light source and cavity-QED on silicon.
    Luxmoore IJ; Toro R; Del Pozo-Zamudio O; Wasley NA; Chekhovich EA; Sanchez AM; Beanland R; Fox AM; Skolnick MS; Liu HY; Tartakovskii AI
    Sci Rep; 2013; 3():1239. PubMed ID: 23393621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of entangled-photons by a quantum dot cascade source in polarized cavities: Using cavity resonances to boost signals and preserve the entanglements.
    Nasiri Avanaki K; Schatz GC
    J Chem Phys; 2023 Apr; 158(14):144106. PubMed ID: 37061505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.