These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 36014667)
1. Insight into the Role of Nanoparticles Shape Factors and Diameter on the Dynamics of Rotating Water-Based Fluid. Akbar AA; Ahammad NA; Awan AU; Hussein AK; Gamaoun F; Tag-ElDin EM; Ali B Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014667 [TBL] [Abstract][Full Text] [Related]
2. Significance of Dust Particles, Nanoparticles Radius, Coriolis and Lorentz Forces: The Case of Maxwell Dusty Fluid. Wei Y; Rehman SU; Fatima N; Ali B; Ali L; Chung JD; Shah NA Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564220 [TBL] [Abstract][Full Text] [Related]
3. Numerical Analysis of Thermal Radiative Maxwell Nanofluid Flow Over-Stretching Porous Rotating Disk. Zhou SS; Bilal M; Khan MA; Muhammad T Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34068521 [TBL] [Abstract][Full Text] [Related]
4. Influence of nanoparticles aggregation and Lorentz force on the dynamics of water-titanium dioxide nanoparticles on a rotating surface using finite element simulation. Ali B; Siddique I; Ahmad H; Askar S Sci Rep; 2023 Mar; 13(1):4702. PubMed ID: 36949222 [TBL] [Abstract][Full Text] [Related]
5. Transportation of thermal and velocity slip factors on three-dimensional dual phase nanomaterials liquid flow towards an exponentially stretchable surface. Hussain A; Akkurt N; Rehman A; Alrihieli HF; Alharbi FM; Abdussattar A; Eldin SM Sci Rep; 2022 Nov; 12(1):18595. PubMed ID: 36329055 [TBL] [Abstract][Full Text] [Related]
6. MHD rotating flow over a stretching surface: The role of viscosity and aggregation of nanoparticles. Alqahtani AM; Rafique K; Mahmood Z; Al-Sinan BR; Khan U; Hassan AM Heliyon; 2023 Nov; 9(11):e21107. PubMed ID: 37928015 [TBL] [Abstract][Full Text] [Related]
7. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Hafeez A; Khan M; Ahmed J Comput Methods Programs Biomed; 2020 Jul; 191():105342. PubMed ID: 32113101 [TBL] [Abstract][Full Text] [Related]
8. Investigation of 3D flow of magnetized hybrid nanofluid with heat source/sink over a stretching sheet. Farooq U; Tahir M; Waqas H; Muhammad T; Alshehri A; Imran M Sci Rep; 2022 Jul; 12(1):12254. PubMed ID: 35851048 [TBL] [Abstract][Full Text] [Related]
9. Bidirectional rotating flow of nanofluid over a variable thickened stretching sheet with non-Fourier's heat flux and non-Fick's mass flux theory. Mabood F; Imtiaz M; Rafiq M; El-Zahar ER; Sidi MO; Khan MI PLoS One; 2022; 17(4):e0265443. PubMed ID: 35482823 [TBL] [Abstract][Full Text] [Related]
10. Effect of Thermal Radiation on Three-Dimensional Magnetized Rotating Flow of a Hybrid Nanofluid. Asghar A; Lund LA; Shah Z; Vrinceanu N; Deebani W; Shutaywi M Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564275 [TBL] [Abstract][Full Text] [Related]
11. Impact of variable thermal conductivity on flow of trihybrid nanofluid over a stretching surface. Jan SU; Khan U; Islam S; Ayaz M Nanotechnology; 2023 Aug; 34(46):. PubMed ID: 37549667 [TBL] [Abstract][Full Text] [Related]
12. Significance of nanoparticles aggregation on the dynamics of rotating nanofluid subject to gyrotactic microorganisms, and Lorentz force. Ali B; Siddique I; Ali R; Awrejcewicze J; Jarad F; Khalifa HAE Sci Rep; 2022 Sep; 12(1):16258. PubMed ID: 36171248 [TBL] [Abstract][Full Text] [Related]
13. Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy. Abdal S; Siddique I; Alrowaili D; Al-Mdallal Q; Hussain S Sci Rep; 2022 Jan; 12(1):278. PubMed ID: 34997184 [TBL] [Abstract][Full Text] [Related]
14. Numerical investigation of MHD flow of hyperbolic tangent nanofluid over a non-linear stretching sheet. Ahmed I; Alghamdi M; Amjad M; Aziz F; Akbar T; Muhammad T Heliyon; 2023 Jul; 9(7):e17658. PubMed ID: 37449134 [TBL] [Abstract][Full Text] [Related]
15. Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet. Li S; Puneeth V; Saeed AM; Singhal A; Al-Yarimi FAM; Khan MI; Eldin SM Sci Rep; 2023 Feb; 13(1):2340. PubMed ID: 36759730 [TBL] [Abstract][Full Text] [Related]
16. Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction. Mahabaleshwar US; Vinay Kumar PN; Sheremet M Springerplus; 2016; 5(1):1901. PubMed ID: 27867808 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of magnetized partially ionized copper, copper oxide-water and kerosene oil nanofluid flow with Cattaneo-Christov heat flux. Abid N; Ramzan M; Chung JD; Kadry S; Chu YM Sci Rep; 2020 Nov; 10(1):19300. PubMed ID: 33168878 [TBL] [Abstract][Full Text] [Related]
18. Multiple physical aspects during the flow and heat transfer analysis of Carreau fluid with nanoparticles. Hashim ; Hafeez A; Alshomrani AS; Khan M Sci Rep; 2018 Nov; 8(1):17402. PubMed ID: 30479358 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of Rotating Micropolar Fluid over a Stretch Surface: The Case of Linear and Quadratic Convection Significance in Thermal Management. Ali B; Ahammad NA; Awan AU; Guedri K; Tag-ElDin EM; Majeed S Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144888 [TBL] [Abstract][Full Text] [Related]
20. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet. Hady FM; Ibrahim FS; Abdel-Gaied SM; Eid MR Nanoscale Res Lett; 2012 Apr; 7(1):229. PubMed ID: 22520273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]