These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36015411)
21. The Potential of Law JW; Ser HL; Khan TM; Chuah LH; Pusparajah P; Chan KG; Goh BH; Lee LH Front Microbiol; 2017; 8():3. PubMed ID: 28144236 [TBL] [Abstract][Full Text] [Related]
22. Biological control potential of worrisome wheat blast disease by the seed endophytic bacilli. Surovy MZ; Dutta S; Mahmud NU; Gupta DR; Farhana T; Paul SK; Win J; Dunlap C; Oliva R; Rahman M; Sharpe AG; Islam T Front Microbiol; 2024; 15():1336515. PubMed ID: 38529179 [TBL] [Abstract][Full Text] [Related]
23. The Risk of Wheat Blast in Rice-Wheat Co-Planting Regions in China: MoO Strains of Shizhen W; Jiaoyu W; Zhen Z; Zhongna H; Xueming Z; Rongyao C; Haiping Q; Yanli W; Fucheng L; Guochang S Phytopathology; 2021 Aug; 111(8):1393-1400. PubMed ID: 33471560 [TBL] [Abstract][Full Text] [Related]
24. Magnaporthe oryzae pathotype Triticum (MoT) can act as a heterologous expression system for fungal effectors with high transcript abundance in wheat. Jensen C; Saunders DGO Sci Rep; 2023 Jan; 13(1):108. PubMed ID: 36596834 [TBL] [Abstract][Full Text] [Related]
25. The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Xu T; Cao L; Zeng J; Franco CMM; Yang Y; Hu X; Liu Y; Wang X; Gao Y; Bu Z; Shi L; Zhou G; Zhou Q; Liu X; Zhu Y Pestic Biochem Physiol; 2019 Oct; 160():58-69. PubMed ID: 31519258 [TBL] [Abstract][Full Text] [Related]
26. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122 [TBL] [Abstract][Full Text] [Related]
27. Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat. Inoue Y; Vy TTP; Tani D; Tosa Y New Phytol; 2021 Jan; 229(1):488-500. PubMed ID: 32852846 [TBL] [Abstract][Full Text] [Related]
29. QTL Pyramiding Provides Marginal Improvement in 2N Cruppe G; Lemes da Silva C; Lollato RP; Fritz AK; Kuhnem P; D Cruz C; Calderon L; Valent B Plant Dis; 2023 Aug; 107(8):2407-2416. PubMed ID: 36691278 [TBL] [Abstract][Full Text] [Related]
30. Wheat Blast: A Disease Spreading by Intercontinental Jumps and Its Management Strategies. Singh PK; Gahtyari NC; Roy C; Roy KK; He X; Tembo B; Xu K; Juliana P; Sonder K; Kabir MR; Chawade A Front Plant Sci; 2021; 12():710707. PubMed ID: 34367228 [TBL] [Abstract][Full Text] [Related]
31. Genome-wide association mapping for wheat blast resistance in CIMMYT's international screening nurseries evaluated in Bolivia and Bangladesh. Juliana P; He X; Kabir MR; Roy KK; Anwar MB; Marza F; Poland J; Shrestha S; Singh RP; Singh PK Sci Rep; 2020 Oct; 10(1):15972. PubMed ID: 33009436 [TBL] [Abstract][Full Text] [Related]
32. First Report of Root Rot Caused by Dactylonectria torresensis on Bletilla striata (Baiji) in Yunnan, China. Li W; Zhang X; Pei W; Zheng G Plant Dis; 2020 Oct; ():. PubMed ID: 33090068 [TBL] [Abstract][Full Text] [Related]
33. First Report of Gray Leaf Spot Caused by Pyricularia oryzae (synonym: Magnaporthe oryzae) in Oat (Avena sativa) in Georgia, USA. Spratling WT; Sapkota S; Vermeer BC; Mallard J; Ali E; Martinez-Espinoza A; Bahri BA Plant Dis; 2021 Aug; ():. PubMed ID: 34455806 [TBL] [Abstract][Full Text] [Related]
34. Hormetic Effects of Carbendazim on Mycelial Growth and Aggressiveness of Song J; Han C; Zhang S; Wang Y; Liang Y; Dai Q; Huo Z; Xu K J Fungi (Basel); 2022 Sep; 8(10):. PubMed ID: 36294573 [TBL] [Abstract][Full Text] [Related]
35. Identification of Rice Blast Loss-of-Function Mutant Alleles in the Wheat Genome as a New Strategy for Wheat Blast Resistance Breeding. Guo H; Du Q; Xie Y; Xiong H; Zhao L; Gu J; Zhao S; Song X; Islam T; Liu L Front Genet; 2021; 12():623419. PubMed ID: 34093638 [TBL] [Abstract][Full Text] [Related]
36. Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. Atkinson HA; Daniels A; Read ND Fungal Genet Biol; 2002 Dec; 37(3):233-44. PubMed ID: 12431458 [TBL] [Abstract][Full Text] [Related]
37. MoTea4-mediated polarized growth is essential for proper asexual development and pathogenesis in Magnaporthe oryzae. Patkar RN; Suresh A; Naqvi NI Eukaryot Cell; 2010 Jul; 9(7):1029-38. PubMed ID: 20472691 [TBL] [Abstract][Full Text] [Related]
38. Influence of Nutrient and Environmental Factors on Conidial Germination of Potebniamyces pyri. Liu Q; Xiao CL Phytopathology; 2005 May; 95(5):572-80. PubMed ID: 18943324 [TBL] [Abstract][Full Text] [Related]
39. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Oliveira AS; Braga GUL; Rangel DEN Fungal Biol; 2018 Jun; 122(6):555-562. PubMed ID: 29801800 [TBL] [Abstract][Full Text] [Related]
40. First Report of Moldy Core of Sweet Tango Apples from New Zealand Caused by Alternaria arborescens. Ali S; Abbasi P; Rehman S; Ellouze W Plant Dis; 2021 Mar; ():. PubMed ID: 33761775 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]