These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 36015422)

  • 1. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture.
    Timofeeva A; Galyamova M; Sedykh S
    Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects of phosphate solubilizing microorganisms in sustainable agriculture.
    Kaur H; Mir RA; Hussain SJ; Prasad B; Kumar P; Aloo BN; Sharma CM; Dubey RC
    World J Microbiol Biotechnol; 2024 Aug; 40(10):291. PubMed ID: 39105959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture.
    Alori ET; Glick BR; Babalola OO
    Front Microbiol; 2017; 8():971. PubMed ID: 28626450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minerals solubilizing and mobilizing microbiomes: A sustainable approach for managing minerals' deficiency in agricultural soil.
    Devi R; Kaur T; Kour D; Yadav A; Yadav AN; Suman A; Ahluwalia AS; Saxena AK
    J Appl Microbiol; 2022 Sep; 133(3):1245-1272. PubMed ID: 35588278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities.
    Timofeeva AM; Galyamova MR; Sedykh SE
    Plants (Basel); 2023 Dec; 12(24):. PubMed ID: 38140401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus.
    Bargaz A; Elhaissoufi W; Khourchi S; Benmrid B; Borden KA; Rchiad Z
    Microbiol Res; 2021 Nov; 252():126842. PubMed ID: 34438221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective.
    Alaylar B; Egamberdieva D; Gulluce M; Karadayi M; Arora NK
    World J Microbiol Biotechnol; 2020 Jun; 36(7):93. PubMed ID: 32562106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity.
    Elhaissoufi W; Ghoulam C; Barakat A; Zeroual Y; Bargaz A
    J Adv Res; 2022 May; 38():13-28. PubMed ID: 35572398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.
    Chang CH; Yang SS
    Bioresour Technol; 2009 Feb; 100(4):1648-58. PubMed ID: 18951782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does a rhizospheric microorganism enhance K⁺ availability in agricultural soils?
    Meena VS; Maurya BR; Verma JP
    Microbiol Res; 2014; 169(5-6):337-47. PubMed ID: 24315210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phosphate-solubilising fungi in sustainable agriculture: unleashing the potential of fungal biofertilisers for plant growth.
    Fu SF; Balasubramanian VK; Chen CL; Tran TT; Muthuramalingam JB; Chou JY
    Folia Microbiol (Praha); 2024 Aug; 69(4):697-712. PubMed ID: 38937405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria.
    Zeng Q; Ding X; Wang J; Han X; Iqbal HMN; Bilal M
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45089-45106. PubMed ID: 35474421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System.
    Bargaz A; Lyamlouli K; Chtouki M; Zeroual Y; Dhiba D
    Front Microbiol; 2018; 9():1606. PubMed ID: 30108553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review.
    Arcand MM; Schneider KD
    An Acad Bras Cienc; 2006 Dec; 78(4):791-807. PubMed ID: 17143413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of Phosphate-Solubilizing Microorganisms and the Formulation of Biofertilizer for Sustainable Processing of Phosphate Rock.
    Mayadunna N; Karunarathna SC; Asad S; Stephenson SL; Elgorban AM; Al-Rejaie S; Kumla J; Yapa N; Suwannarach N
    Life (Basel); 2023 Mar; 13(3):. PubMed ID: 36983937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source.
    Rezakhani L; Motesharezadeh B; Tehrani MM; Etesami H; Mirseyed Hosseini H
    Ecotoxicol Environ Saf; 2019 May; 173():504-513. PubMed ID: 30802739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth.
    Bononi L; Chiaramonte JB; Pansa CC; Moitinho MA; Melo IS
    Sci Rep; 2020 Feb; 10(1):2858. PubMed ID: 32071331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity.
    Cheng Y; Narayanan M; Shi X; Chen X; Li Z; Ma Y
    Sci Total Environ; 2023 Nov; 901():166468. PubMed ID: 37619729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering.
    Wang C; Pan G; Lu X; Qi W
    Front Bioeng Biotechnol; 2023; 11():1181078. PubMed ID: 37251561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas.
    Vyas P; Gulati A
    BMC Microbiol; 2009 Aug; 9():174. PubMed ID: 19698133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.