These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 36015671)
1. A Three-Dimensional Bioprinted Copolymer Scaffold with Biocompatibility and Structural Integrity for Potential Tissue Regeneration Applications. Peng BY; Ou KL; Liu CM; Chu SF; Huang BH; Cho YC; Saito T; Tsai CH; Hung KS; Lan WC Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015671 [TBL] [Abstract][Full Text] [Related]
2. An Innovative Biofunctional Composite Hydrogel with Enhanced Printability, Rheological Properties, and Structural Integrity for Cell Scaffold Applications. Mappa TA; Liu CM; Tseng CC; Ruslin M; Cheng JH; Lan WC; Huang BH; Cho YC; Hsieh CC; Kuo HH; Tsou CH; Shen YK Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571117 [TBL] [Abstract][Full Text] [Related]
3. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
4. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [TBL] [Abstract][Full Text] [Related]
7. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
8. Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. T Somasekharan L; Kasoju N; Raju R; Bhatt A Bioengineering (Basel); 2020 Sep; 7(3):. PubMed ID: 32916945 [TBL] [Abstract][Full Text] [Related]
9. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085 [TBL] [Abstract][Full Text] [Related]
10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
11. Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration. Sanaei K; Zamanian A; Mashayekhan S; Ramezani T Iran Biomed J; 2023 Sep; 27(5):280-93. PubMed ID: 37873644 [TBL] [Abstract][Full Text] [Related]
12. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
13. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. Soltan N; Ning L; Mohabatpour F; Papagerakis P; Chen X ACS Biomater Sci Eng; 2019 Jun; 5(6):2976-2987. PubMed ID: 33405600 [TBL] [Abstract][Full Text] [Related]
14. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974 [TBL] [Abstract][Full Text] [Related]
15. Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting. Cavallo A; Al Kayal T; Mero A; Mezzetta A; Guazzelli L; Soldani G; Losi P J Funct Biomater; 2023 Sep; 14(9):. PubMed ID: 37754873 [TBL] [Abstract][Full Text] [Related]
16. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
17. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Zhao Y; Li Y; Mao S; Sun W; Yao R Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399 [TBL] [Abstract][Full Text] [Related]
18. Optimization of methacrylated gelatin /layered double hydroxides nanocomposite cell-laden hydrogel bioinks with high printability for 3D extrusion bioprinting. Alarçin E; İzbudak B; Yüce Erarslan E; Domingo S; Tutar R; Titi K; Kocaaga B; Guner FS; Bal-Öztürk A J Biomed Mater Res A; 2023 Feb; 111(2):209-223. PubMed ID: 36213938 [TBL] [Abstract][Full Text] [Related]
19. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]