These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. PPG Signal Reconstruction Using Deep Convolutional Generative Adversarial Network. Wang Y; Azimi I; Kazemi K; Rahmani AM; Liljeberg P Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3387-3391. PubMed ID: 36086184 [TBL] [Abstract][Full Text] [Related]
3. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features. Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791 [TBL] [Abstract][Full Text] [Related]
4. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
5. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618 [TBL] [Abstract][Full Text] [Related]
6. Robust PPG motion artifact detection using a 1-D convolution neural network. Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054 [TBL] [Abstract][Full Text] [Related]
7. Analysis of photoplethysmogram signal to estimate heart rate during physical activity using fractional fourier transform - A sampling frequency independent and reference signal-less method. Pankaj ; Kumar A; Ashdhir A; Komaragiri R; Kumar M Comput Methods Programs Biomed; 2023 Feb; 229():107294. PubMed ID: 36528998 [TBL] [Abstract][Full Text] [Related]
8. Hybrid Convolutional Networks for End-to-End Event Detection in Concurrent PPG and PCG Signals Affected by Motion Artifacts. Marzorati D; Dorizza A; Bovio D; Salito C; Mainardi L; Cerveri P IEEE Trans Biomed Eng; 2022 Aug; 69(8):2512-2523. PubMed ID: 35119997 [TBL] [Abstract][Full Text] [Related]
9. Noise Reduction in Photoplethysmography Signals Using a Convolutional Denoising Autoencoder With Unconventional Training Scheme. Mohagheghian F; Han D; Ghetia O; Peitzsch A; Nishita N; Pirayesh Shirazi Nejad M; Ding EY; Noorishirazi K; Hamel A; Otabil EM; DiMezza D; Dickson EL; Tran KV; McManus DD; Chon KH IEEE Trans Biomed Eng; 2024 Feb; 71(2):456-466. PubMed ID: 37682653 [TBL] [Abstract][Full Text] [Related]
10. Preeminently Robust Neural PPG Denoiser. Kwon JH; Kim SE; Kim NH; Lee EC; Lee JH Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336253 [TBL] [Abstract][Full Text] [Related]
11. A novel method for accurate estimation of HRV from smartwatch PPG signals. Bhowmik T; Dey J; Tiwari VN Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():109-112. PubMed ID: 29059822 [TBL] [Abstract][Full Text] [Related]
12. Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation. Chowdhury SS; Hyder R; Hafiz MSB; Haque MA IEEE J Biomed Health Inform; 2018 Mar; 22(2):450-459. PubMed ID: 27893403 [TBL] [Abstract][Full Text] [Related]
13. Adaptive scheduling of acceleration and gyroscope for motion artifact cancelation in photoplethysmography. Lee H; Chung H; Ko H; Parisi A; Busacca A; Faes L; Pernice R; Lee J Comput Methods Programs Biomed; 2022 Nov; 226():107126. PubMed ID: 36130416 [TBL] [Abstract][Full Text] [Related]
14. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection. Chong JW; Dao DK; Salehizadeh SM; McManus DD; Darling CE; Chon KH; Mendelson Y Ann Biomed Eng; 2014 Nov; 42(11):2238-50. PubMed ID: 25092422 [TBL] [Abstract][Full Text] [Related]
15. A solution for co-frequency and low SNR problems in heart rate estimation based on photoplethysmography signals. Zhao J; Chen X; Zhang X; Chen X Med Biol Eng Comput; 2022 Dec; 60(12):3419-3433. PubMed ID: 36190610 [TBL] [Abstract][Full Text] [Related]
16. Motion Artifact Removal for PPG Signals based on Accurate Fundamental Frequency Estimation and Notch Filtering. Zhang Q; Xie Q; Wang M; Wang G Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2965-2968. PubMed ID: 30441021 [TBL] [Abstract][Full Text] [Related]
17. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation. Islam MT; Ahmed ST; Shahnaz C; Fattah SA Med Biol Eng Comput; 2019 Mar; 57(3):689-702. PubMed ID: 30349957 [TBL] [Abstract][Full Text] [Related]
18. Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering. Wang M; Li Z; Zhang Q; Wang G Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357674 [TBL] [Abstract][Full Text] [Related]
19. Smart automated heart health monitoring using photoplethysmography signal classification. Raj R; Selvakumar J; Maik V Biomed Tech (Berl); 2021 Jun; 66(3):247-256. PubMed ID: 34062637 [TBL] [Abstract][Full Text] [Related]
20. Deep PPG: Large-Scale Heart Rate Estimation with Convolutional Neural Networks. Reiss A; Indlekofer I; Schmidt P; Van Laerhoven K Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]