These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36015860)
1. Real-Time Depth of Anaesthesia Assessment Based on Hybrid Statistical Features of EEG. Huang Y; Wen P; Song B; Li Y Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015860 [TBL] [Abstract][Full Text] [Related]
2. Consciousness and depth of anesthesia assessment based on Bayesian analysis of EEG signals. Nguyen-Ky T; Wen PP; Li Y IEEE Trans Biomed Eng; 2013 Jun; 60(6):1488-98. PubMed ID: 23314762 [TBL] [Abstract][Full Text] [Related]
3. Measuring the hypnotic depth of anaesthesia based on the EEG signal using combined wavelet transform, eigenvector and normalisation techniques. Nguyen-Ky T; Wen P; Li Y; Malan M Comput Biol Med; 2012 Jun; 42(6):680-91. PubMed ID: 22575174 [TBL] [Abstract][Full Text] [Related]
4. Developing a robust model to predict depth of anesthesia from single channel EEG signal. Alsafy I; Diykh M Phys Eng Sci Med; 2022 Sep; 45(3):793-808. PubMed ID: 35790625 [TBL] [Abstract][Full Text] [Related]
5. SQI-DOANet: electroencephalogram-based deep neural network for estimating signal quality index and depth of anaesthesia. Yu R; Zhou Z; Xu M; Gao M; Zhu M; Wu S; Gao X; Bin G J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 39029477 [No Abstract] [Full Text] [Related]
6. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery. Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS Med Biol Eng Comput; 2017 Aug; 55(8):1435-1450. PubMed ID: 27995430 [TBL] [Abstract][Full Text] [Related]
7. Real-time depth of anaesthesia assessment using strong analytical signal transform technique. Palendeng ME; Wen P; Li Y Australas Phys Eng Sci Med; 2014 Dec; 37(4):723-30. PubMed ID: 25412884 [TBL] [Abstract][Full Text] [Related]
8. A novel empirical wavelet SODP and spectral entropy based index for assessing the depth of anaesthesia. Schmierer T; Li T; Li Y Health Inf Sci Syst; 2022 Dec; 10(1):10. PubMed ID: 35685297 [TBL] [Abstract][Full Text] [Related]
9. A novel spectral entropy-based index for assessing the depth of anaesthesia. Ra JS; Li T; Li Y Brain Inform; 2021 May; 8(1):10. PubMed ID: 33978842 [TBL] [Abstract][Full Text] [Related]
10. Harnessing machine learning for EEG signal analysis: Innovations in depth of anaesthesia assessment. Schmierer T; Li T; Li Y Artif Intell Med; 2024 May; 151():102869. PubMed ID: 38593683 [TBL] [Abstract][Full Text] [Related]
11. Depth of anesthesia monitoring in Norway-A web-based survey. Aasheim A; Rosseland LA; Leonardsen AL; Romundstad L Acta Anaesthesiol Scand; 2024 Jul; 68(6):781-787. PubMed ID: 38551019 [TBL] [Abstract][Full Text] [Related]
12. Can electromyographic arousal be detected visually on the Datex-Ohmeda S/5™ anesthesia monitor? Aho AJ; Yli-Hankala A; Lyytikäinen LP; Kamata K; Jäntti V Acta Anaesthesiol Scand; 2013 Mar; 57(3):364-72. PubMed ID: 22928590 [TBL] [Abstract][Full Text] [Related]
13. Depth of anaesthesia assessment based on adult electroencephalograph beta frequency band. Li T; Wen P Australas Phys Eng Sci Med; 2016 Sep; 39(3):773-81. PubMed ID: 27323760 [TBL] [Abstract][Full Text] [Related]
14. Measuring and reflecting depth of anesthesia using wavelet and power spectral density. Nguyen-Ky T; Wen PP; Li Y; Gray R IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):630-9. PubMed ID: 21606041 [TBL] [Abstract][Full Text] [Related]
15. Comparative Analysis of Phase Lag Entropy and Bispectral Index as Anesthetic Depth Indicators in Patients Undergoing Thyroid Surgery with Nerve Integrity Monitoring. Seo KH; Kim KM; Lee SK; John H; Lee J J Korean Med Sci; 2019 May; 34(20):e151. PubMed ID: 31124327 [TBL] [Abstract][Full Text] [Related]
16. Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia. Gu Y; Liang Z; Hagihira S Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159263 [TBL] [Abstract][Full Text] [Related]
17. Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition. Madanu R; Rahman F; Abbod MF; Fan SZ; Shieh JS Math Biosci Eng; 2021 Jun; 18(5):5047-5068. PubMed ID: 34517477 [TBL] [Abstract][Full Text] [Related]
18. A Combinatorial Deep Learning Structure for Precise Depth of Anesthesia Estimation From EEG Signals. Afshar S; Boostani R; Sanei S IEEE J Biomed Health Inform; 2021 Sep; 25(9):3408-3415. PubMed ID: 33760743 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Bispectral Index and Entropy values with electroencephalogram during surgical anaesthesia with sevoflurane. Aho AJ; Kamata K; Jäntti V; Kulkas A; Hagihira S; Huhtala H; Yli-Hankala A Br J Anaesth; 2015 Aug; 115(2):258-66. PubMed ID: 26137969 [TBL] [Abstract][Full Text] [Related]
20. Design and Implementation of a Machine Learning Based EEG Processor for Accurate Estimation of Depth of Anesthesia. Saadeh W; Khan FH; Altaf MAB IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):658-669. PubMed ID: 31180871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]