These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36015861)

  • 1. Relation between Mass Sensitivity and Complex Power Flow in Love Wave Sensors.
    Kiełczyński P
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Study of Monolayer and Double-Layer Waveguide Love Wave Sensors for Achieving High Sensitivity.
    Li S; Wan Y; Fan C; Su Y
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28327504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the sensitivity of the acoustic waveguide sensor.
    Gizeli E
    Anal Chem; 2000 Dec; 72(24):5967-72. PubMed ID: 11140764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of a Love wave device with ZnO nanorods for high mass sensitivity.
    Trivedi S; Nemade HB
    Ultrasonics; 2018 Mar; 84():150-161. PubMed ID: 29128738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ST Quartz Acoustic Wave Sensors with Sectional Guiding Layers.
    Newton MI; Roach P; McHale G
    Sensors (Basel); 2008 Jul; 8(7):4384-4391. PubMed ID: 27879942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Theoretical Study of Love Wave Sensors Based on ZnO-Glass Layered Structures for Application to Liquid Environments.
    Caliendo C; Hamidullah M
    Biosensors (Basel); 2016 Dec; 6(4):. PubMed ID: 27918419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of viscous losses in the chemical interface layer of Love wave sensors.
    Jakoby B; Vellekoop MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):696-700. PubMed ID: 18238598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the dependence of ZnO film on the sensitivity of Love mode sensor in ZnO/quartz structure.
    Chu SY; Water W; Liaw JT
    Ultrasonics; 2003 Mar; 41(2):133-9. PubMed ID: 12565077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real time device for biosensing: design of a bacteriophage model using love acoustic waves.
    Tamarin O; Comeau S; Déjous C; Moynet D; Rebière D; Bezian J; Pistré J
    Biosens Bioelectron; 2003 May; 18(5-6):755-63. PubMed ID: 12706589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SU-8 Guiding Layer for Love Wave Devices.
    Roach P; Atherton S; Doy N; McHale G; Newton MI
    Sensors (Basel); 2007 Nov; 7(11):2539-2547. PubMed ID: 28903244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Love-Mode MEMS Devices for Sensing Applications in Liquids.
    Caliendo C; Sait S; Boubenider F
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite Element Study for Mass Sensitivity of Love Surface Acoustic Wave Sensor with Si
    Li L; Zhou M; Huang L; Jiang B
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line monitoring of polymer deposition for tailoring the waveguide characteristics of love-wave biosensors.
    Bender F; Länge K; Barié N; Kondoh J; Rapp M
    Langmuir; 2004 Mar; 20(6):2315-9. PubMed ID: 15835690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation Analysis of a Multiple Layer Guided Love Wave Sensor in a Viscoelastic Environment.
    Wang T; Murphy R; Wang J; Mohapatra SS; Mohapatra S; Guldiken R
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the physical properties of room temperature ionic liquids using a Love wave device.
    Ouali FF; Doy N; McHale G; Hardacre C; Ge R; Allen RW; MacInnes JM; Newton MI
    Anal Chem; 2011 Sep; 83(17):6717-21. PubMed ID: 21786814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.
    Kiełczyński P; Szalewski M; Balcerzak A; Wieja K
    Ultrasonics; 2016 Feb; 65():220-7. PubMed ID: 26482393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on Fabrication of ZnO Waveguide Layer for Love Wave Humidity Sensor Based on Magnetron Sputtering.
    Wen C; Niu T; Ma Y; Gao N; Ru F
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Micro-Inertia and Flexoelectricity on Love Wave Propagation in Layered Piezoelectric Structures.
    Hrytsyna O; Sladek J; Sladek V
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Love Wave Reflective Delay Line with Polymer Guiding Layer for Wireless Sensor Application.
    Wang W; He S
    Sensors (Basel); 2008 Dec; 8(12):7917-7929. PubMed ID: 27873967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Mode Love-Wave SAW Magnetic-Field Sensors.
    Schmalz J; Kittmann A; Durdaut P; Spetzler B; Faupel F; Höft M; Quandt E; Gerken M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.