These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36015870)

  • 1. A New De-Noising Method Based on Enhanced Time-Frequency Manifold and Kurtosis-Wavelet Dictionary for Rolling Bearing Fault Vibration Signal.
    Tong Q; Liu Z; Lu F; Feng Z; Wan Q
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.
    Liu Z; He Z; Guo W; Tang Z
    ISA Trans; 2016 Mar; 61():211-220. PubMed ID: 26753616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings.
    Kang Y; Chen G; Wang H; Pan W; Wei X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early-Stage Fault Diagnosis of Motor Bearing Based on Kurtosis Weighting and Fusion of Current-Vibration Signals.
    Zhang B; Li H; Kong W; Fu M; Ma J
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of EEMD and improved frequency band entropy in bearing fault feature extraction.
    Li H; Liu T; Wu X; Chen Q
    ISA Trans; 2019 May; 88():170-185. PubMed ID: 30558907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enhanced K-SVD denoising algorithm based on adaptive soft-threshold shrinkage for fault detection of wind turbine rolling bearing.
    Li J; Wang Z; Li Q; Zhang J
    ISA Trans; 2023 Nov; 142():454-464. PubMed ID: 37567807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling Bearing Composite Fault Diagnosis Method Based on Enhanced Harmonic Vector Analysis.
    Lu J; Yin Q; Li S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive online dictionary learning for bearing fault diagnosis.
    Lu Y; Xie R; Liang SY
    Int J Adv Manuf Technol; 2019 Mar; 101(1-4):195-202. PubMed ID: 31182896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bearing Fault Detection Based on Empirical Wavelet Transform and Correlated Kurtosis by Acoustic Emission.
    Gao Z; Lin J; Wang X; Xu X
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An enhanced rolling bearing fault detection method combining sparse code shrinkage denoising with fast spectral correlation.
    Li J; Yu Q; Wang X; Zhang Y
    ISA Trans; 2020 Jul; 102():335-346. PubMed ID: 32122637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis.
    Cheng Y; Wang Z; Chen B; Zhang W; Huang G
    ISA Trans; 2019 Aug; 91():218-234. PubMed ID: 30738582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Mutual Information-Sample Entropy Based MED-ICEEMDAN De-Noising Scheme for Weak Fault Diagnosis of Hoist Bearing.
    Yang F; Kou Z; Wu J; Li T
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings.
    Ding C; Zhao M; Lin J; Jiao J
    ISA Trans; 2019 May; 88():199-215. PubMed ID: 30578001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of composite dictionary multi-atom matching in gear fault diagnosis.
    Cui L; Kang C; Wang H; Chen P
    Sensors (Basel); 2011; 11(6):5981-6002. PubMed ID: 22163938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved Autogram and MOMEDA method to detect weak compound fault in rolling bearings.
    Xie X; Yang Z; Zhang L; Zeng G; Wang X; Zhang P; Chen G
    Math Biosci Eng; 2022 Jul; 19(10):10424-10444. PubMed ID: 36032001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines.
    Xiang L; Su H; Li Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multichannel Signals Reconstruction Based on Tunable
    Li Q; Hu W; Peng E; Liang SY
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bearing Fault Diagnosis Method Based on PAVME and MEDE.
    Yan X; Xu Y; She D; Zhang W
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rolling element bearing fault identification using a novel three-step adaptive and automated filtration scheme based on Gini index.
    Albezzawy MN; Nassef MG; Sawalhi N
    ISA Trans; 2020 Jun; 101():453-460. PubMed ID: 31955946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.