These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36015870)

  • 61. Periodical sparse low-rank matrix estimation algorithm for fault detection of rolling bearings.
    Wang B; Liao Y; Ding C; Zhang X
    ISA Trans; 2020 Jun; 101():366-378. PubMed ID: 32035636
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bearing fault diagnosis based on wavelet sparse convolutional network and acoustic emission compression signals.
    Tai J; Liu C; Wu X; Yang J
    Math Biosci Eng; 2022 Jun; 19(8):8057-8080. PubMed ID: 35801457
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals.
    Altaf M; Akram T; Khan MA; Iqbal M; Ch MMI; Hsu CH
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271159
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Novel Signal Separation and De-Noising Technique for Doppler Radar Vital Signal Detection.
    Li X; Liu B; Liu Y; Li J; Lai J; Zheng Z
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683855
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improved Wavelet Threshold for Image De-noising.
    Zhang Y; Ding W; Pan Z; Qin J
    Front Neurosci; 2019; 13():39. PubMed ID: 30800051
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Fault Diagnosis Approach for Rolling Bearing Integrated SGMD, IMSDE and Multiclass Relevance Vector Machine.
    Yan X; Liu Y; Jia M
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759788
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A New Method Based on Time-Varying Filtering Intrinsic Time-Scale Decomposition and General Refined Composite Multiscale Sample Entropy for Rolling-Bearing Feature Extraction.
    Ma J; Han S; Li C; Zhan L; Zhang GZ
    Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33920417
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Diagnosis of Compound Fault Using Sparsity Promoted-Based Sparse Component Analysis.
    Hao Y; Song L; Ke Y; Wang H; Chen P
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587296
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Screening of Discrete Wavelet Transform Parameters for the Denoising of Rolling Bearing Signals in Presence of Localised Defects.
    Brusa E; Delprete C; Gargiuli S; Giorio L
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616608
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Automatic de-noising of knee-joint vibration signals using adaptive time-frequency representations.
    Krishnan S; Rangayyan RM
    Med Biol Eng Comput; 2000 Jan; 38(1):2-8. PubMed ID: 10829383
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Incipient fault diagnosis for the cam-driven absolute gravimeter.
    Hu R; Feng J; Mou Z; Yin X; Li Z; Ma H
    Rev Sci Instrum; 2022 May; 93(5):054501. PubMed ID: 35649802
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multi-objective Informative Frequency Band Selection Based on Negentropy-induced Grey Wolf Optimizer for Fault Diagnosis of Rolling Element Bearings.
    Gu X; Yang S; Liu Y; Hao R; Liu Z
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32225091
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing.
    Chen SW; Chen YH
    Sensors (Basel); 2015 Oct; 15(10):26396-414. PubMed ID: 26501290
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detection of weak fault using sparse empirical wavelet transform for cyclic fault.
    Lu Y; Xie R; Liang SY
    Int J Adv Manuf Technol; 2018 Nov; 99(5-8):1195-1201. PubMed ID: 31182897
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intelligent Diagnosis of Rolling Element Bearing Based on Refined Composite Multiscale Reverse Dispersion Entropy and Random Forest.
    Liu A; Yang Z; Li H; Wang C; Liu X
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271193
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.
    Yan X; Jia M; Zhang W; Zhu L
    ISA Trans; 2018 Feb; 73():165-180. PubMed ID: 29331434
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Performance comparison of wavelet based denoising methods on discontinuous adventitious lung sounds.
    Ulukaya S; Serbes G; Kahya YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2928-2931. PubMed ID: 29060511
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mean estimation empirical mode decomposition method for terahertz time-domain spectroscopy de-noising.
    Qiao X; Zhang X; Ren J; Zhang D; Cao G; Li L
    Appl Opt; 2017 Sep; 56(25):7138-7145. PubMed ID: 29047974
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Shock Pulse Index and Its Application in the Fault Diagnosis of Rolling Element Bearings.
    Sun P; Liao Y; Lin J
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28282883
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rolling Element Bearing Fault Diagnosis under Impulsive Noise Environment Based on Cyclic Correntropy Spectrum.
    Zhao X; Qin Y; He C; Jia L; Kou L
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.