BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 36015885)

  • 1. Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China.
    Bai Z; Xie M; Hu B; Luo D; Wan C; Peng J; Shi Z
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
    Zhao MS; Wang T; Lu Y; Wang S; Wu Y
    PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of soil organic carbon in a coal mining area by Vis-NIR spectroscopy.
    Sun W; Li X; Niu B
    PLoS One; 2018; 13(4):e0196198. PubMed ID: 29677214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: feature selection.
    Shi T; Chen Y; Liu H; Wang J; Wu G
    Appl Spectrosc; 2014; 68(8):831-7. PubMed ID: 25061784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled Vis-NIR spectroscopy with chemometrics strategy for soil organic carbon prediction in the Agro-pastoral Transitional zone of northwest China.
    Dong Z; Wang N; Xie J; Ke X
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124496. PubMed ID: 38796895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of soil pH from Vis-NIR spectroscopy by extreme learning machine and variable selection: A case study in lime concretion black soil.
    Wang L; Wang R
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121707. PubMed ID: 35970087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy.
    Ding J; Yang A; Wang J; Sagan V; Yu D
    PeerJ; 2018; 6():e5714. PubMed ID: 30357023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating soil organic carbon content with visible-near-infrared (vis-NIR) spectroscopy.
    Gao Y; Cui L; Lei B; Zhai Y; Shi T; Wang J; Chen Y; He H; Wu G
    Appl Spectrosc; 2014; 68(7):712-22. PubMed ID: 25014837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Soil Organic Matter in Arid Zones with Coupled Environmental Variables and Spectral Features.
    Wang Z; Ding J; Zhang Z
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis-NIR Spectroscopy.
    Xu S; Shi X; Wang M; Zhao Y
    PLoS One; 2016; 11(3):e0151536. PubMed ID: 26974821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms.
    Hu L; Yin C; Ma S; Liu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():574-581. PubMed ID: 30075438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of soil organic carbon in LUCAS soil database using Vis-NIR spectroscopy based on hybrid kernel Gaussian process regression.
    Liu B; Guo B; Zhuo R; Dai F
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jun; 321():124687. PubMed ID: 38909558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Estimation of Soil Pb Concentration Based on Spectral Feature Screening and Multi-Strategy Spectral Fusion.
    Zhang Z; Wang Z; Luo Y; Zhang J; Tian D; Zhang Y
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra.
    Yang M; Xu D; Chen S; Li H; Shi Z
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30641879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra.
    Peng Y; Xiong X; Adhikari K; Knadel M; Grunwald S; Greve MH
    PLoS One; 2015; 10(11):e0142295. PubMed ID: 26555071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of SO
    Tian A; Zhao J; Fu C; Xiong H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121647. PubMed ID: 35944403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling.
    Semella S; Hutengs C; Seidel M; Ulrich M; Schneider B; Ortner M; Thiele-Bruhn S; Ludwig B; Vohland M
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of soil organic matter content based on CARS algorithm coupled with random forest.
    Liu J; Dong Z; Xia J; Wang H; Meng T; Zhang R; Han J; Wang N; Xie J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Sep; 258():119823. PubMed ID: 33901945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?
    Biney JKM; Blöcher JR; Bell SM; Borůvka L; Vašát R
    Sci Total Environ; 2022 Sep; 838(Pt 3):156304. PubMed ID: 35649456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Two Portable Hyperspectral-Sensor-Based Instruments to Predict Key Soil Properties in Canadian Soils.
    Dhawale NM; Adamchuk VI; Prasher SO; Rossel RAV; Ismail AA
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.