These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36015915)

  • 1. Feasibility Study of Constructing a Screening Tool for Adolescent Diabetes Detection Applying Machine Learning Methods.
    Hu H; Lai T; Farid F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.
    Dinh A; Miertschin S; Young A; Mohanty SD
    BMC Med Inform Decis Mak; 2019 Nov; 19(1):211. PubMed ID: 31694707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined strategy of feature selection and machine learning to identify predictors of prediabetes.
    De Silva K; Jönsson D; Demmer RT
    J Am Med Inform Assoc; 2020 Mar; 27(3):396-406. PubMed ID: 31889178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning-based diagnosis modelling of type 2 diabetes mellitus with environmental metal exposure.
    Zhao M; Wan J; Qin W; Huang X; Chen G; Zhao X
    Comput Methods Programs Biomed; 2023 Jun; 235():107537. PubMed ID: 37037162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergency department triage prediction of clinical outcomes using machine learning models.
    Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K
    Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harnessing machine learning models for non-invasive pre-diabetes screening in children and adolescents.
    Kushwaha S; Srivastava R; Jain R; Sagar V; Aggarwal AK; Bhadada SK; Khanna P
    Comput Methods Programs Biomed; 2022 Nov; 226():107180. PubMed ID: 36279639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons of the prediction models for undiagnosed diabetes between machine learning versus traditional statistical methods.
    Choi SG; Oh M; Park DH; Lee B; Lee YH; Jee SH; Jeon JY
    Sci Rep; 2023 Aug; 13(1):13101. PubMed ID: 37567907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning for predicting hepatitis B or C virus infection in diabetic patients.
    Kim SH; Park SH; Lee H
    Sci Rep; 2023 Dec; 13(1):21518. PubMed ID: 38057379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus.
    Wei H; Sun J; Shan W; Xiao W; Wang B; Ma X; Hu W; Wang X; Xia Y
    Sci Total Environ; 2022 Feb; 806(Pt 2):150674. PubMed ID: 34597539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.
    Olisah CC; Smith L; Smith M
    Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Comprehensive Machine Learning Analytics for Heart Failure.
    Guo CY; Wu MY; Cheng HM
    Int J Environ Res Public Health; 2021 May; 18(9):. PubMed ID: 34066464
    [No Abstract]   [Full Text] [Related]  

  • 12. Machine learning-based analysis of adolescent gambling factors.
    Seo W; Kim N; Lee SK; Park SM
    J Behav Addict; 2020 Oct; 9(3):734-743. PubMed ID: 33011712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive models for diabetes mellitus using machine learning techniques.
    Lai H; Huang H; Keshavjee K; Guergachi A; Gao X
    BMC Endocr Disord; 2019 Oct; 19(1):101. PubMed ID: 31615566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques.
    Li J; Chen Q; Hu X; Yuan P; Cui L; Tu L; Cui J; Huang J; Jiang T; Ma X; Yao X; Zhou C; Lu H; Xu J
    Int J Med Inform; 2021 May; 149():104429. PubMed ID: 33647600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine-learning-based algorithm improves prediction of preeclampsia-associated adverse outcomes.
    Schmidt LJ; Rieger O; Neznansky M; Hackelöer M; Dröge LA; Henrich W; Higgins D; Verlohren S
    Am J Obstet Gynecol; 2022 Jul; 227(1):77.e1-77.e30. PubMed ID: 35114187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic stress in practice assistants: An analytic approach comparing four machine learning classifiers with a standard logistic regression model.
    Bozorgmehr A; Thielmann A; Weltermann B
    PLoS One; 2021; 16(5):e0250842. PubMed ID: 33945572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of 3-year risk of diabetic kidney disease using machine learning based on electronic medical records.
    Dong Z; Wang Q; Ke Y; Zhang W; Hong Q; Liu C; Liu X; Yang J; Xi Y; Shi J; Zhang L; Zheng Y; Lv Q; Wang Y; Wu J; Sun X; Cai G; Qiao S; Yin C; Su S; Chen X
    J Transl Med; 2022 Mar; 20(1):143. PubMed ID: 35346252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting depressive symptoms in middle-aged and elderly adults using sleep data and clinical health markers: A machine learning approach.
    Gomes SRBS; von Schantz M; Leocadio-Miguel M
    Sleep Med; 2023 Feb; 102():123-131. PubMed ID: 36641929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risk Stratification for Early Detection of Diabetes and Hypertension in Resource-Limited Settings: Machine Learning Analysis.
    Boutilier JJ; Chan TCY; Ranjan M; Deo S
    J Med Internet Res; 2021 Jan; 23(1):e20123. PubMed ID: 33475518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.