These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36015938)

  • 1. Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations.
    Wang M; Xiao Y; Li W; Zhao H; Hua W; Jiang Y
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Influence of an Unsupported Sleeper on the Vertical Bearing Characteristics of Heavy-Haul Railway Ballast.
    Liu D; Su C; Zhang D; Lan C
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-mechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: effects of elastic layers and ballast types.
    Kumar N; Suhr B; Marschnig S; Dietmaier P; Marte C; Six K
    Granul Matter; 2019; 21(4):106. PubMed ID: 31708679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating Morphology and Breakage Evolution Characteristics of Railroad Ballasts over Distinct Supports Subjected to Impact Loading.
    Xiao Y; Jiang Y; Tan P; Kong K; Ali J; Mustafina R; Zhu H; Cai D
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-of-the-Art Review of Ground Penetrating Radar (GPR) Applications for Railway Ballast Inspection.
    Wang S; Liu G; Jing G; Feng Q; Liu H; Guo Y
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Sleeper-Ballast Particle Contact on Lateral Resistance of Concrete Sleepers in Ballasted Railway Tracks.
    Chalabii J; Movahedi Rad M; Hadizadeh Raisi E; Esfandiari Mehni R
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Hazard Effects of Crosswinds on Cascading Failures of Conventional and Interspersed Railway Tracks Exposed to Ballast Washaway and Moving Train Loads.
    Fu H; Yang Y; Kaewunruen S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognostics of unsupported railway sleepers and their severity diagnostics using machine learning.
    Sresakoolchai J; Kaewunruen S
    Sci Rep; 2022 Apr; 12(1):6064. PubMed ID: 35411031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the Permeability of Potential Ballast Rocks from Northern Rio de Janeiro State under Different Fouling Rates after Sodium Sulfate Attack.
    Souza RN; de Castro Xavier G; da Costa KOB; Alexandre J; Ribeiro RP; de Azevedo ARG
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Machine-Learning-Based Approach for Railway Track Monitoring Using Acceleration Measured on an In-Service Train.
    Malekjafarian A; Sarrabezolles CA; Khan MA; Golpayegani F
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient DEM simulations of railway ballast using simple particle shapes.
    Suhr B; Six K
    Granul Matter; 2022; 24(4):114. PubMed ID: 36119809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the Effect of Rail Fastener Failure on Dynamic Responses of Train-Ballasted Track-Subgrade Coupling System for Smart Track Condition Assessment.
    Xiao Y; Chang Z; Mao J; Zhou S; Wang X; Wang W; Cai D; Zhu H; Long Y
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35408002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HRSBallast: A high-resolution dataset featuring scanned angular, semi-angular and rounded railway ballast.
    Broekman A; Van Niekerk JO; Gräbe PJ
    Data Brief; 2020 Dec; 33():106471. PubMed ID: 33204781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Train-Track-Bridge Coupling Vibration Characteristics for Heavy-Haul Railway Based on Virtual Work Principle.
    Wu N; Yang H; Afsar H; Wang B; Fan J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete element modelling of under sleeper pads using a box test.
    Li H; McDowell GR
    Granul Matter; 2018; 20(2):26. PubMed ID: 31007579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Random Lateral Ballast Resistance on Force-Deformation Characteristics of CWR with a Small-Radius Curve.
    Wang H; Xing C; Deng X
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced vertical railway track quality index with dynamic responses from moving trains.
    Unsiwilai S; Phusakulkajorn W; Shen C; Zoeteman A; Dollevoet R; Núñez A; Li Z
    Heliyon; 2024 Oct; 10(19):e38670. PubMed ID: 39430498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEM modelling of railway ballast using the Conical Damage Model: a comprehensive parametrisation strategy.
    Suhr B; Skipper WA; Lewis R; Six K
    Granul Matter; 2022; 24(1):40. PubMed ID: 35125957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple particle shapes for DEM simulations of railway ballast: influence of shape descriptors on packing behaviour.
    Suhr B; Six K
    Granul Matter; 2020; 22(2):43. PubMed ID: 32226281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statics performance of heavy-haul railway low-vibration track (LVT) under varying loading condition with the finite element method.
    Zeng Z; Hu G; Huang X; Wang W; Qahtan AAS; Shuaibu AA; Wang J
    Sci Prog; 2021 Oct; 104(4):368504211036330. PubMed ID: 34644204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.