These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36015940)

  • 1. A Deep Q-Network-Based Algorithm for Multi-Connectivity Optimization in Heterogeneous Cellular-Networks.
    Hernández-Carlón JJ; Pérez-Romero J; Sallent O; Vilà I; Casadevall F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.
    Yang S; Yang B; Kang Z; Deng L
    Neural Netw; 2021 Jul; 139():265-277. PubMed ID: 33838602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Tier Slicing Resource Allocation Algorithm Based on Deep Reinforcement Learning and Joint Bidding in Wireless Access Networks.
    Chen G; Zhang X; Shen F; Zeng Q
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobility-Aware Resource Allocation in IoRT Network for Post-Disaster Communications with Parameterized Reinforcement Learning.
    Kabir H; Tham ML; Chang YC; Chow CO; Owada Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slicing Resource Allocation Based on Dueling DQN for eMBB and URLLC Hybrid Services in Heterogeneous Integrated Networks.
    Chen G; Shao R; Shen F; Zeng Q
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Temporal Deep Q Learning for Optimal Load Balancing in Software-Defined Networks.
    Sharma A; Balasubramanian V; Kamruzzaman J
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Network Based IRSs-UEs Association and IRSs Optimal Placement in Multi IRSs Aided Wireless System.
    Nor AM; Halunga S; Fratu O
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Q-network-based traffic signal control models.
    Park S; Han E; Park S; Jeong H; Yun I
    PLoS One; 2021; 16(9):e0256405. PubMed ID: 34473716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.
    Lee S; Lee S; Kim K; Kim YH
    PLoS One; 2015; 10(10):e0139190. PubMed ID: 26461933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving.
    Yang F; Li X; Liu Q; Li Z; Gao X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CCGN: Centralized collaborative graphical transformer multi-agent reinforcement learning for multi-intersection signal free-corridor.
    Mukhtar H; Afzal A; Alahmari S; Yonbawi S
    Neural Netw; 2023 Sep; 166():396-409. PubMed ID: 37549608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IoT-Based Reinforcement Learning Using Probabilistic Model for Determining Extensive Exploration through Computational Intelligence for Next-Generation Techniques.
    Tiwari PK; Singh P; Rajagopal NK; Deepa K; Gulavani S; Verma A; Kumar YP
    Comput Intell Neurosci; 2023; 2023():5113417. PubMed ID: 37854640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Reinforcement Learning-Assisted Optimization for Resource Allocation in Downlink OFDMA Cooperative Systems.
    Tefera MK; Zhang S; Jin Z
    Entropy (Basel); 2023 Feb; 25(3):. PubMed ID: 36981302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrum Handoff Based on DQN Predictive Decision for Hybrid Cognitive Radio Networks.
    Cao K; Qian P
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.
    Zhao S; Gu S
    Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture.
    Ladosz P; Ben-Iwhiwhu E; Dick J; Ketz N; Kolouri S; Krichmar JL; Pilly PK; Soltoggio A
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2045-2056. PubMed ID: 34559664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MonkeyKing: Adaptive Parameter Tuning on Big Data Platforms with Deep Reinforcement Learning.
    Du H; Han P; Xiang Q; Huang S
    Big Data; 2020 Aug; 8(4):270-290. PubMed ID: 32654536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5G Traffic Prediction Based on Deep Learning.
    Gao Z
    Comput Intell Neurosci; 2022; 2022():3174530. PubMed ID: 35785055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Deep Reinforcement Learning to NS-SHAFT Game Signal Control.
    Chang CL; Chen ST; Lin PY; Chang CY
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.