BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36015987)

  • 1. Automatic Detection of Olive Tree Canopies for Groves with Thick Plant Cover on the Ground.
    Illana Rico S; Martínez Gila DM; Cano Marchal P; Gómez Ortega J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of High-Resolution Multispectral UAVs to Calculate Projected Ground Area in
    Altieri G; Maffia A; Pastore V; Amato M; Celano G
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olive Tree Biovolume from UAV Multi-Resolution Image Segmentation with Mask R-CNN.
    Safonova A; Guirado E; Maglinets Y; Alcaraz-Segura D; Tabik S
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution imagery acquired from an unmanned platform to estimate biophysical and geometrical parameters of olive trees under different irrigation regimes.
    Caruso G; Zarco-Tejada PJ; González-Dugo V; Moriondo M; Tozzini L; Palai G; Rallo G; Hornero A; Primicerio J; Gucci R
    PLoS One; 2019; 14(1):e0210804. PubMed ID: 30668591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Efficient Deep Learning Mechanism for the Recognition of Olive Trees in Jouf Region.
    Alshammari HH; Shahin OR
    Comput Intell Neurosci; 2022; 2022():9249530. PubMed ID: 36093507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Detection of Olive Trees Affected by Xylella Fastidiosa from UAVs Using Multispectral Imaging.
    Di Nisio A; Adamo F; Acciani G; Attivissimo F
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878075
    [No Abstract]   [Full Text] [Related]  

  • 8. Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling.
    Jiménez-Brenes FM; López-Granados F; de Castro AI; Torres-Sánchez J; Serrano N; Peña JM
    Plant Methods; 2017; 13():55. PubMed ID: 28694843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.
    Meneguzzo DM; Liknes GC; Nelson MD
    Environ Monit Assess; 2013 Aug; 185(8):6261-75. PubMed ID: 23255169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Canopy Information Measurement Method for Modern Standardized Apple Orchards Based on UAV Multimodal Information.
    Sun G; Wang X; Yang H; Zhang X
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing UAV-Based Technologies and RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley.
    Rueda-Ayala VP; Peña JM; Höglind M; Bengochea-Guevara JM; Andújar D
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inversion reflectance by apple tree canopy ground and unmanned aerial vehicle integrated remote sensing data.
    Yu R; Zhu X; Bai X; Tian Z; Jiang Y; Yang G
    J Plant Res; 2021 Jul; 134(4):729-736. PubMed ID: 33590370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using canopy height model derived from UAV imagery as an auxiliary for spectral data to estimate the canopy cover of mixed broadleaf forests.
    Miraki M; Sohrabi H
    Environ Monit Assess; 2021 Dec; 194(1):45. PubMed ID: 34958415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and Relative Abundance of Insect Vectors of
    Morente M; Cornara D; Plaza M; Durán JM; Capiscol C; Trillo R; Ruiz M; Ruz C; Sanjuan S; Pereira JA; Moreno A; Fereres A
    Insects; 2018 Dec; 9(4):. PubMed ID: 30513710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.
    Torres-Sánchez J; López-Granados F; Serrano N; Arquero O; Peña JM
    PLoS One; 2015; 10(6):e0130479. PubMed ID: 26107174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping.
    Xu R; Li C; Paterson AH
    PLoS One; 2019; 14(2):e0205083. PubMed ID: 30811435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage.
    Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing olive grove canopies by means of ground-based hemispherical photography and spaceborne RADAR data.
    Molina I; Morillo C; García-Meléndez E; Guadalupe R; Roman MI
    Sensors (Basel); 2011; 11(8):7476-501. PubMed ID: 22164028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.