These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36016062)

  • 21. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Liu J; Zhao H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty.
    Kim M; Kim JS; Choi MS; Park JH
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impaired Learning From Negative Feedback in Stimulant Use Disorder: Dopaminergic Modulation.
    Lim TV; Cardinal RN; Bullmore ET; Robbins TW; Ersche KD
    Int J Neuropsychopharmacol; 2021 Nov; 24(11):867-878. PubMed ID: 34197589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction.
    Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y
    Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The value-complexity trade-off for reinforcement learning based brain-computer interfaces.
    Levi-Aharoni H; Tishby N
    J Neural Eng; 2021 Feb; 17(6):066011. PubMed ID: 33586668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational evidence for hierarchically structured reinforcement learning in humans.
    Eckstein MK; Collins AGE
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29381-29389. PubMed ID: 33229518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning.
    Tan J; Shen X; Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hippocampal Contribution to Probabilistic Feedback Learning: Modeling Observation- and Reinforcement-based Processes.
    Patt VM; Palombo DJ; Esterman M; Verfaellie M
    J Cogn Neurosci; 2022 Jul; 34(8):1429-1446. PubMed ID: 35604353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated Double Estimator Architecture for Reinforcement Learning.
    Lv P; Wang X; Cheng Y; Duan Z; Chen CLP
    IEEE Trans Cybern; 2022 May; 52(5):3111-3122. PubMed ID: 33027028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating unsupervised and reinforcement learning in human categorical perception: A computational model.
    Granato G; Cartoni E; Da Rold F; Mattera A; Baldassarre G
    PLoS One; 2022; 17(5):e0267838. PubMed ID: 35536843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Data Efficient Reinforcement Learning for Integrated Lateral Planning and Control in Automated Parking System.
    Song S; Chen H; Sun H; Liu M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33353153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weak Human Preference Supervision for Deep Reinforcement Learning.
    Cao Z; Wong K; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Supervised Discovering of Interpretable Features for Reinforcement Learning.
    Shi W; Huang G; Song S; Wang Z; Lin T; Wu C
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2712-2724. PubMed ID: 33186101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inverse Reinforcement Learning in Tracking Control Based on Inverse Optimal Control.
    Xue W; Kolaric P; Fan J; Lian B; Chai T; Lewis FL
    IEEE Trans Cybern; 2022 Oct; 52(10):10570-10581. PubMed ID: 33877993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAwSu: an integrated model of associative and reinforcement learning.
    Veksler VD; Myers CW; Gluck KA
    Cogn Sci; 2014 Apr; 38(3):580-98. PubMed ID: 24460979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.