These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. The occurrence of immune priming can be species-specific in entomopathogens. Medina Gomez H; Adame Rivas G; Hernández-Quintero A; González Hernández A; Torres Guzmán JC; Mendoza HL; Contreras-Garduño J Microb Pathog; 2018 May; 118():361-364. PubMed ID: 29614365 [TBL] [Abstract][Full Text] [Related]
43. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Yang SS; Brandon AM; Andrew Flanagan JC; Yang J; Ning D; Cai SY; Fan HQ; Wang ZY; Ren J; Benbow E; Ren NQ; Waymouth RM; Zhou J; Criddle CS; Wu WM Chemosphere; 2018 Jan; 191():979-989. PubMed ID: 29145143 [TBL] [Abstract][Full Text] [Related]
44. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor). Jacobs CGC; Gallagher JD; Evison SEF; Heckel DG; Vilcinskas A; Vogel H Dev Comp Immunol; 2017 May; 70():1-8. PubMed ID: 28034605 [TBL] [Abstract][Full Text] [Related]
45. Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Yang SS; Ding MQ; He L; Zhang CH; Li QX; Xing DF; Cao GL; Zhao L; Ding J; Ren NQ; Wu WM Sci Total Environ; 2021 Feb; 756():144087. PubMed ID: 33280873 [TBL] [Abstract][Full Text] [Related]
47. Previous encapsulation response enhances within individual protection against fungal parasite in the mealworm beetle Tenebrio molitor. Krams I; Daukste J; Kivleniece I; Krama T; Rantala MJ Insect Sci; 2013 Dec; 20(6):771-7. PubMed ID: 23956033 [TBL] [Abstract][Full Text] [Related]
48. Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Yang SS; Ding MQ; Zhang ZR; Ding J; Bai SW; Cao GL; Zhao L; Pang JW; Xing DF; Ren NQ; Wu WM Sci Total Environ; 2021 Oct; 789():147915. PubMed ID: 34049145 [TBL] [Abstract][Full Text] [Related]
49. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Chae JH; Kurokawa K; So YI; Hwang HO; Kim MS; Park JW; Jo YH; Lee YS; Lee BL Dev Comp Immunol; 2012 Mar; 36(3):540-6. PubMed ID: 22001126 [TBL] [Abstract][Full Text] [Related]
50. HMGB1-like dorsal switch protein 1 of the mealworm, Tenebrio molitor, acts as a damage-associated molecular pattern. Mollah MMI; Kim Y Arch Insect Biochem Physiol; 2021 Jul; 107(3):e21795. PubMed ID: 33973266 [TBL] [Abstract][Full Text] [Related]
51. Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: A sustainable approach for waste management. Peng BY; Chen Z; Chen J; Zhou X; Wu WM; Zhang Y J Hazard Mater; 2021 Aug; 416():125803. PubMed ID: 33882390 [TBL] [Abstract][Full Text] [Related]
52. Staphylococcus aureus artificially inoculated in mealworm larvae rearing chain for human consumption: Long-term investigation into survival and toxin production. Cesaro C; Mannozzi C; Lepre A; Ferrocino I; Belleggia L; Corsi L; Ruschioni S; Isidoro N; Riolo P; Petruzzelli A; Savelli D; Milanović V; Cardinali F; Garofalo C; Cocolin L; Aquilanti L; Osimani A Food Res Int; 2022 Dec; 162(Pt B):112083. PubMed ID: 36461332 [TBL] [Abstract][Full Text] [Related]
53. Edosa TT; Jo YH; Keshavarz M; Park KB; Cho JH; Bae YM; Kim B; Lee YS; Han YS Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32059408 [TBL] [Abstract][Full Text] [Related]
54. Using multilevel models to explore the impact of abiotic and biotic conditions on the efficacy of pirimiphos-methyl against Tenebrio molitor L. Kavallieratos NG; Papanikolaou NE; Kazani AN; Boukouvala MC; Malesios C Environ Sci Pollut Res Int; 2021 Apr; 28(14):17200-17207. PubMed ID: 33398738 [TBL] [Abstract][Full Text] [Related]
55. Mealworm ( Hong J; Han T; Kim YY Animals (Basel); 2020 Nov; 10(11):. PubMed ID: 33171639 [TBL] [Abstract][Full Text] [Related]
56. Properties of induced antimicrobial activity in Musca domestica larvae. Kawasaki K; Andoh M Drug Discov Ther; 2017 Jul; 11(3):156-160. PubMed ID: 28652511 [TBL] [Abstract][Full Text] [Related]
57. A possible role of tachykinin-related peptide on an immune system activity of mealworm beetle, Tenebrio molitor L. Urbański A; Konopińska N; Lubawy J; Walkowiak-Nowicka K; Marciniak P; Rolff J Dev Comp Immunol; 2021 Jul; 120():104065. PubMed ID: 33705792 [TBL] [Abstract][Full Text] [Related]
58. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Yoo JS; Cho KH; Hong JS; Jang HS; Chung YH; Kwon GT; Shin DG; Kim YY Asian-Australas J Anim Sci; 2019 Mar; 32(3):387-394. PubMed ID: 30381730 [TBL] [